A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.
120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1
Examples
120 = 2^3*3*5; sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, B2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
- David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.
Links
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Kevin A. Broughan and Qizhi Zhou, Divisibility by 3 of even multiperfect numbers of abundancy 3 and 4, JIS 13 (2010) 10.1.5
- Alfred Brousseau, Number Theory Tables, Fibonacci Association, San Jose, CA, 1973, p. 138.
- Seth Colbert-Pollack, Judy Holdener, Emily Rachfal, and Yanqi Xu, A DIY Project: Construct Your Own Multiply Perfect Number!, Math Horizons, Vol. 28, pp. 20-23, February 2021.
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page [This page contains a lot of useful information, but be careful, not all the statements are correct. For example, it appears to claim that the six terms of this sequence are known to be complete, which is not the case. - _N. J. A. Sloane_, Sep 10 2014]
- James Grime and Brady Haran, The Six Triperfect Numbers, Numberphile video (2018).
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Fred Helenius, Link to Glossary and Lists
- Masao Kishore, Odd Triperfect Numbers, Mathematics of Computation, vol. 42, no. 165, 1984, pp. 231-233.
- Gérard P. Michon, Multiperfect and hemiperfect numbers
- Walter Nissen, Abundancy : Some Resources
- N. J. A. Sloane & A. L. Brown, Correspondence, 1974
- Eric Weisstein's World of Mathematics, Multiperfect Number
- Eric Weisstein's World of Mathematics, Sous-Double
- Wikipedia, Multiply perfect number, (section Triperfect numbers)
Crossrefs
Cf. A000203, A000396, A007539, A017665, A019278, A027687, A046060, A046061, A068403, A075701, A097023, A171266, A259302, A259303, A306373, A326051, A326181, A329189, A335141, A335254, A347383, A347391.
Programs
-
Maple
A005820:=n->`if`(numtheory[sigma](n) = 3*n, n, NULL): seq(A005820(n), n=1..6*10^5); # Wesley Ivan Hurt, Oct 15 2017
-
Mathematica
triPerfectQ[n_] := DivisorSigma[1, n] == 3n; A005820 = {}; Do[If[triPerfectQ[n], AppendTo[A005820, n]], {n, 10^6}]; A005820 (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *) Select[Range[10^6],DivisorSigma[1,#]==3#&] (* Harvey P. Dale, Jul 03 2023 *)
-
PARI
isok(n) = sigma(n, -1) == 3; \\ Michel Marcus, Nov 22 2015
Formula
a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019
Extensions
Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.
Comments