cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005902 Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.

Original entry on oeis.org

1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217, 10179, 12431, 14993, 17885, 21127, 24739, 28741, 33153, 37995, 43287, 49049, 55301, 62063, 69355, 77197, 85609, 94611, 104223, 114465, 125357, 136919, 149171, 162133, 175825, 190267, 205479
Offset: 0

Views

Author

Keywords

Comments

Called "magic numbers" in some chemical contexts.
Partial sums of A005901(n). - Lekraj Beedassy, Oct 30 2003
Equals binomial transform of [1, 12, 30, 20, 0, 0, 0, ...]. - Gary W. Adamson, Aug 01 2008
Crystal ball sequence for A_3 lattice. - Michael Somos, Jun 03 2012

Examples

			a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - _Gary W. Adamson_, Aug 01 2008
G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...
		

References

  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    [(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // G. C. Greubel, Dec 01 2017
    
  • Maple
    A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;
    A005902:=(z+1)*(z**2+8*z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := (2n + 1)(5n^2 + 5n + 3)/3; Array[f, 36, 0] (* Robert G. Wilson v, Feb 02 2011 *)
    LinearRecurrence[{4,-6,4,-1},{1,13,55,147},50] (* Harvey P. Dale, Oct 08 2015 *)
    CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* Indranil Ghosh, Apr 08 2017 *)
  • PARI
    {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* Michael Somos, Jun 03 2012 */
    
  • PARI
    x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ Indranil Ghosh, Apr 08 2017
    
  • Python
    def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
    print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 13 2021

Formula

a(n) = (2*n+1)*(5*n^2+5*n+3)/3.
For n > 0, n*a(n) = (Sum_{i=0..n-1} a(i)) + 2*A005891(n)*A000217(n). - Bruno Berselli, Feb 02 2011
a(-1 - n) = -a(n). - Michael Somos, Jun 03 2012
From Indranil Ghosh, Apr 08 2017: (Start)
G.f.: (x^3 + 9x^2 + 9x + 1)/(x - 1)^4.
E.g.f.: (1/3)*exp(x)*(10x^3 + 45x^2 + 36x + 3).
(End)
a(n) = A100171(n+1) - A008778(n-1) = A100174(n+1) - A000290(n) = A005917(n+1) - A006331(n) = A051673(n+1) + A000578(n). - Bruce J. Nicholson, Jul 05 2018