cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005435 Number of column-convex polyominoes with perimeter 2n+2.

Original entry on oeis.org

1, 2, 7, 28, 122, 558, 2641, 12822, 63501, 319554, 1629321, 8399092, 43701735, 229211236, 1210561517, 6432491192, 34364148528, 184463064936, 994430028087, 5381653402890, 29226425965907, 159227245772460, 870004781620093, 4766330416567254, 26176585256712224
Offset: 1

Views

Author

Keywords

Examples

			a(3)=7 because we have: the 2 X 2 square, the 3 X 1 and 1 X 3 rectangles and the four polyominoes obtained by removing any of the four cells of the 2 X 2 square.
		

References

  • S. Feretic and D. Svrtan, On the number of column-convex polyominoes with given perimeter and number of columns, Proc. 5th Conf. Formal Power Series and Algebraic Combinatorics, Florence, 1993, pp. 201-214.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    assume(y,positive): G:=((y^2 - 1)*( - 21 + 47*y^2 - 35*y^4 + 5*y^6) - 3*(y^2 - 1)^2*(1 + y^2)*sqrt(1 - 6*y^2 + y^4) - 9*sqrt(2)*(y^2 - 1)^2*sqrt((y^2 - 1)^2*(1 + y^2) - (y^2 - 1)*(1 + y^2)*sqrt(1 - 6*y^2 + y^4)) - sqrt(2)*y*(y^2 - 1)*(1 + y^2)*sqrt((y^2 - 1)^2*(1 + y^2) + (y^2 - 1)*(1 + y^2)*sqrt(1 - 6*y^2 + y^4)))/(72 - 152*y^2 + 92*y^4 - 8*y^6): Gser:=series(G,y=0,70): seq(coeff(Gser,y^(2*n+2)),n=1..31); # Emeric Deutsch, May 13 2006
  • Mathematica
    $Assumptions = (y > 0); terms = 25; ((y^2 - 1)*(-21 + 47*y^2 - 35*y^4 + 5*y^6) - 3*(y^2 - 1)^2*(1 + y^2)*Sqrt[1 - 6*y^2 + y^4] - 9*Sqrt[2]*(y^2 - 1)^2*Sqrt[(y^2 - 1)^2*(1 + y^2) - (y^2 - 1)*(1 + y^2)*Sqrt[1 - 6*y^2 + y^4]] - Sqrt[2]*y*(y^2 - 1)*(1 + y^2)*Sqrt[(y^2 - 1)^2*(1 + y^2) + (y^2 - 1)*(1 + y^2)*Sqrt[1 - 6*y^2 + y^4]])/(72 - 152*y^2 + 92*y^4 - 8*y^6) + O[y]^(2 terms + 3) // Normal // Simplify // CoefficientList[#, y^2]& // #[[3 ;; terms + 2]]& (* Jean-François Alcover, May 15 2017, translated from Maple *)

Formula

See the g.f. in the Maple program (taken from the Brak et al. paper). It has been given previously, in a different form, in the Delest paper (p. 29). - Emeric Deutsch, May 13 2006

Extensions

Corrected by Simon Plouffe.
More terms from Emeric Deutsch, May 13 2006

A006026 Number of column-convex polyominoes with perimeter n.

Original entry on oeis.org

1, 3, 12, 54, 260, 1310, 6821, 36413, 198227, 1096259, 6141764, 34784432, 198828308, 1145544680, 6645621536, 38786564126, 227585926704, 1341757498470, 7944249448686, 47217102715624, 281615520373954, 1684957401786580, 10110628493454482, 60830401073611514
Offset: 1

Views

Author

Keywords

Comments

With offset 2, a(n) = number of directed column-convex polyominoes with directed-site perimeter = n. Directed means every cell (unit square) is reachable from the lower left cell, which is assumed to touch the origin. The directed-site perimeter is the number of unit squares in the first quadrant outside the polyomino but sharing at least one side with it. For example, the polyomino consisting of only one cell (with vertices (0,0),(1,0),(1,1),(0,1)) has directed-site perimeter = 2 due to the squares just above and to the right of it. - David Callan, Nov 29 2007

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[2]=1;a[3]=3; a[n_]/;n>=4 := a[n] = ( 2(n-1)(21n-34)a[n-1] - (3n-8)(23n-43)a[n-2] + 16(n-3)(2n-7)a[n-3] )/(5(n-1)n); Table[a[n],{n,10}] (* David Callan, Nov 29 2007 *)

Formula

The g.f. A(x) = x + x^2 + 3x^3 + ... satisfies A^3 - 3A^2 + (1+2x)A - x = 0. - David Callan, Nov 29 2007

Extensions

Delest thesis provided by M.-P. Delest and scanned by Simon Plouffe, Jan 16 2016

A105450 a(n) = binomial(n+5,6) + binomial(n+3,3) + binomial(n+2,3) + binomial(n-1,1).

Original entry on oeis.org

0, 6, 22, 60, 142, 305, 607, 1134, 2008, 3396, 5520, 8668, 13206, 19591, 28385, 40270, 56064, 76738, 103434, 137484, 180430, 234045, 300355, 381662, 480568, 600000, 743236, 913932, 1116150, 1354387, 1633605, 1959262, 2337344, 2774398, 3277566, 3854620
Offset: 0

Views

Author

D. G. Rogers, May 07 2005

Keywords

Comments

Number of directed column-convex polyominoes with perimeter 2(n+4) having n cells in the foundational column.
A051743 and this sequence form successive diagonals in an array that has as row sums the sequence A006027.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n+5,6]+Binomial[n+3,3]+Binomial[n+2,3]+ Binomial[n-1,1],{n,0,50}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,6,22,60,142,305,607},51] (* Harvey P. Dale, Jun 28 2011 *)
  • PARI
    a(n)=n*(n^5+15*n^4+85*n^3+465*n^2+1354*n+2400)/720 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(0)=0, a(1)=6, a(2)=22, a(3)=60, a(4)=142, a(5)=305, a(6)= 607, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Jun 28 2011
G.f.: (2*x^6-11*x^5+26*x^4-32*x^3+20*x^2-6*x)/(x-1)^7. - Harvey P. Dale, Jun 28 2011

A051743 a(n) = (1/24)*n*(n + 5)*(n^2 + n + 6).

Original entry on oeis.org

2, 7, 18, 39, 75, 132, 217, 338, 504, 725, 1012, 1377, 1833, 2394, 3075, 3892, 4862, 6003, 7334, 8875, 10647, 12672, 14973, 17574, 20500, 23777, 27432, 31493, 35989, 40950, 46407, 52392, 58938, 66079, 73850, 82287, 91427, 101308, 111969, 123450
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

Keywords

Comments

This is exactly the number of directed column-convex polyominoes. [Something is clearly missing from this sentence; as it stands, it makes no reference to the index n. - Jon E. Schoenfield, Dec 20 2016]
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n-3)=coeff(charpoly(A,x),x^(n-4)). [Milan Janjic, Jan 24 2010]

Crossrefs

Programs

  • Mathematica
    Table[(n (n + 5) (n^2 + n + 6))/24, {n, 50}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {2, 7, 18, 39, 75}, 50]
  • PARI
    Vec((x^3-3*x^2+3*x-2)/(x-1)^5 + O(x^50)) \\ G. C. Greubel, Dec 21 2016

Formula

a(n) = binomial(n+3, n-1) + binomial(n, n-1) = binomial(n+3, 4) + binomial(n, 1), n > 0.
From Harvey P. Dale, Nov 29 2011: (Start)
a(1)=2, a(2)=7, a(3)=18, a(4)=39, a(5)=75, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (x^3-3*x^2+3*x-2)/(x-1)^5. (End)
E.g.f.: (1/24)*(48*x + 36*x^2 + 12*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 21 2016

A259333 Triangle read by rows: T(n,k) = number of column-convex polyominoes with bond-perimeter 2*n+2 and k columns (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 37, 16, 1, 1, 25, 105, 106, 25, 1, 1, 36, 240, 446, 245, 36, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Examples

			Triangle begins:
1,
1,1,
1,4,1,
1,9,9,1,
1,16,37,16,1,
1,25,105,106,25,1,
1,36,240,446,245,36,1,
...
		

Crossrefs

Row sums are A006027.

Formula

There is an explicit formula for T(n,k) - see Delest (1987), Theorem 24.
Showing 1-5 of 5 results.