cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006027 Number of directed column-convex polyominoes with perimeter 2n+2.

Original entry on oeis.org

1, 1, 2, 6, 20, 71, 263, 1005, 3933, 15684, 63505, 260390, 1079019, 4511700, 19011521, 80653480, 344193353, 1476589475, 6364258163, 27545933212, 119676949397, 521739175908, 2281673067934, 10006784399183, 44002280467770, 193957104163645, 856853526774173
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005435.

Programs

  • Mathematica
    m = 30; A[_] = 0;
    Do[A[x_] = (2(1-x) A[x]^2 - A[x]^3 + x^2 - x^3)/((1-x)(1-2x))+O[x]^m, {m}];
    CoefficientList[1 + A[x]/x, x] (* Jean-François Alcover, Oct 05 2019 *)

Formula

G.f. A(x) = a(1)x^2 + a(2)x^3 + a(3)x^4 + ... satisfies the functional equation A^3 + 2(x-1)A^2 + (2x-1)(x-1)A + (x^2)(x-1) = 0. - D. G. Rogers, May 22 2005

Extensions

More terms from D. G. Rogers and Emanuele Munarini, May 15 2005

A259364 a(n) = 18*n^4*(2*n^3 - 23*n^2 + 38*n - 18)^2.

Original entry on oeis.org

0, 18, 93312, 4737042, 51775488, 263351250, 807055488, 1609827282, 1934917632, 774840978, 691920000, 20514061458, 126428055552, 496767242322, 1543426109568, 4122612551250, 9879830396928, 21788831695122, 44962051370112, 87830997546258, 163819480320000
Offset: 0

Views

Author

Vincenzo Librandi, Jun 25 2015

Keywords

Crossrefs

Programs

  • Magma
    [18*n^4*(2*n^3-23*n^2+38*n-18)^2: n in [0..20]];
    
  • Maple
    A259364:=n->18*n^4*(2*n^3 - 23*n^2 + 38*n - 18)^2: seq(A259364(n), n=0..30); # Wesley Ivan Hurt, Apr 12 2017
  • Mathematica
    Table[18 n^4 (2 n^3 - 23 n^2 + 38 n - 18)^2, {n, 0, 23}]
  • Sage
    [2*(6*n^5-69*n^4+114*n^3-54*n^2)^2 for n in (0..20)] # Bruno Berselli, Jun 25 2015

Formula

G.f.: 18*x*(1 + 5173*x + 206200*x^2 + 266512*x^3 - 3390686*x^4 + 389794*x^5 + 10761232*x^6 + 5689720*x^7 + 580693*x^8 + 6561*x^9)/(1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).

A051743 a(n) = (1/24)*n*(n + 5)*(n^2 + n + 6).

Original entry on oeis.org

2, 7, 18, 39, 75, 132, 217, 338, 504, 725, 1012, 1377, 1833, 2394, 3075, 3892, 4862, 6003, 7334, 8875, 10647, 12672, 14973, 17574, 20500, 23777, 27432, 31493, 35989, 40950, 46407, 52392, 58938, 66079, 73850, 82287, 91427, 101308, 111969, 123450
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

Keywords

Comments

This is exactly the number of directed column-convex polyominoes. [Something is clearly missing from this sentence; as it stands, it makes no reference to the index n. - Jon E. Schoenfield, Dec 20 2016]
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n-3)=coeff(charpoly(A,x),x^(n-4)). [Milan Janjic, Jan 24 2010]

Crossrefs

Programs

  • Mathematica
    Table[(n (n + 5) (n^2 + n + 6))/24, {n, 50}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {2, 7, 18, 39, 75}, 50]
  • PARI
    Vec((x^3-3*x^2+3*x-2)/(x-1)^5 + O(x^50)) \\ G. C. Greubel, Dec 21 2016

Formula

a(n) = binomial(n+3, n-1) + binomial(n, n-1) = binomial(n+3, 4) + binomial(n, 1), n > 0.
From Harvey P. Dale, Nov 29 2011: (Start)
a(1)=2, a(2)=7, a(3)=18, a(4)=39, a(5)=75, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (x^3-3*x^2+3*x-2)/(x-1)^5. (End)
E.g.f.: (1/24)*(48*x + 36*x^2 + 12*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 21 2016

A259395 a(n) = -3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171).

Original entry on oeis.org

0, 0, 15228, 705024, 1885680, -66355200, -792382500, -4986842112, -22516232256, -81696522240, -252908835300, -693126720000, -1723987588752, -3961019252736, -8517765880260, -17315965900800, -33541737120000, -62298041352192, -111515651966916, -193198552634880
Offset: 0

Views

Author

Vincenzo Librandi, Jun 26 2015

Keywords

Crossrefs

Programs

  • Magma
    [-3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171): n in [0..20]];
  • Maple
    A259395:=n->-3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171): seq(A259395(n), n=0..25); # Wesley Ivan Hurt, Jun 29 2015
  • Mathematica
    Table[-3 n^2 (n - 1)^4 (n + 1) (11 n^3 + 49 n^2 - 439 n + 171), {n, 0, 23}]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,0,15228,705024,1885680,-66355200,-792382500,-4986842112,-22516232256,-81696522240,-252908835300},20] (* Harvey P. Dale, Jul 07 2025 *)

Formula

G.f.: 324*x^2*(47+1659*x - 15531*x^2 - 156895*x^3 - 216255*x^4 - 17547*x^5 + 31451*x^6 + 3471*x^7) / (1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).

A269228 Number of nondirected diagonally convex polyominoes with perimeter 2n + 2.

Original entry on oeis.org

1, 2, 7, 28, 122, 556, 2618, 12634, 62128, 310212, 1568495, 8014742, 41323641, 214719610, 1123244757, 5910863420, 31268459118, 166185855552, 886961294034, 4751819567488, 25545030878475, 137756210983218, 745003421378887, 4039670554117446, 21957581725458521
Offset: 1

Views

Author

Svjetlan Feretic, Jul 11 2016

Keywords

Comments

The generating function satisfies an algebraic equation of degree eight. I computed that generating function using the "turbo Temperley" method.
The formula for the generating function is given in the enclosed Maple worksheet.
The most practical version of the "turbo Temperley" method was given in Bousquet-Mélou's paper cited below.
The first five terms are the same as in the sequence A005435.
A005435(n) is the number of column-convex polyominoes with perimeter 2n + 2.
A049124(n) is the number of directed diagonally convex polyominoes with perimeter 2n.

Examples

			a(7) = 2618, so there are 2618 nondirected diagonally convex polyominoes with perimeter 2*7 + 2 = 16.
		

Crossrefs

A259435 a(n) = 2*(n-1)^6*(n+1)^2*(n^2+10*n+1).

Original entry on oeis.org

2, 0, 450, 81920, 2077650, 22413312, 148531250, 716636160, 2763575010, 9017753600, 25850353122, 66816000000, 158678718770, 351151718400, 731985584850, 1449526034432, 2745436781250, 5000952545280, 8800799033090, 15019798118400, 24938174692242, 40392704000000
Offset: 0

Views

Author

Vincenzo Librandi, Jun 27 2015

Keywords

Comments

This appears as the function alpha(n) in Delest, related to bar/bat theory; see section 3.

Crossrefs

Programs

  • Magma
    [2*(n-1)^6*(n+1)^2*(n^2+10*n+1): n in [0..30]];
    
  • Maple
    A259435:=n->2*(n-1)^6*(n+1)^2*(n^2+10*n+1): seq(A259435(n), n=0..30); # Wesley Ivan Hurt, Jun 29 2015
  • Mathematica
    Table[2 (n - 1)^6 (n + 1)^2 (n^2 + 10 n + 1), {n, 0, 30}]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{2,0,450,81920,2077650,22413312,148531250,716636160,2763575010,9017753600,25850353122},30] (* Harvey P. Dale, Dec 29 2024 *)
  • PARI
    a(n)=2*(n-1)^6*(n+1)^2*(n^2+10*n+1) \\ Charles R Greathouse IV, Jun 29 2015
    
  • Sage
    [2*(n-1)^6*(n+1)^2*(n^2+10*n+1) for n in (0..30)] # Bruno Berselli, Jun 30 2015

Formula

G.f.: 2*(1 -11*x + 280*x^2 + 38320*x^3 + 600970*x^4 + 1994794*x^5 + 1444096*x^6 - 231320*x^7 - 207395*x^8 - 10935*x^9)/(1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).

A060379 Number of self-avoiding polygons on the 2-dimensional square lattice with perimeter 2n with at most 4 horizontal edges in each vertical cross-section.

Original entry on oeis.org

1, 2, 7, 28, 124, 588, 2938, 15266, 81770, 448698, 2510813, 14277838, 82286365, 479610362, 2822332127, 16745262798
Offset: 2

Views

Author

Doron Zeilberger, Apr 03 2001

Keywords

Examples

			a(3) = 2 because there are 2 self-avoiding polygons of perimeter 2*3 with at most 4 horizontal edges per vertical cross-section.
		

Crossrefs

Formula

See Appendix 2 of the reference (a 7-page system of linear functional equations for 5 unknown generating functions, one of which is the desired generating function).

A259563 a(n) = 81*n^3*(n-1)^5*(n+1)^2*(n^2-6*n+1)*(n^3-79*n^2+163*n-81).

Original entry on oeis.org

0, 0, 2571912, 2472394752, 138662798400, 1666179072000, -4637478825000, -272992368918528, -3187483870330368, -23209723979366400, -126970182577359000, -566493158246400000, -2161675076294530368, -7278963158259007488, -22112928086617859400, -61611251010011136000
Offset: 0

Views

Author

Vincenzo Librandi, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [81*n^3*(n-1)^5*(n+1)^2*(n^2-6*n+1)*(n^3-79*n^2+163*n-81): n in [0..20]];
  • Mathematica
    Table[81 n^3 (n-1)^5 (n+1)^2 (n^2 - 6 n + 1) (n^3 - 79 n^2 + 163 n - 81), {n, 0, 23}]
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{0,0,2571912,2472394752,138662798400,1666179072000,-4637478825000,-272992368918528,-3187483870330368,-23209723979366400,-126970182577359000,-566493158246400000,-2161675076294530368,-7278963158259007488,-22112928086617859400,-61611251010011136000},20] (* Harvey P. Dale, Sep 02 2024 *)

Formula

G.f.: 52488*x^2*(49 + 46320*x + 1894016*x^2 - 4899760*x^3 - 305530185*x^4 - 1372006208*x^5 - 1287460720*x^6 + 1418574528*x^7 + 2422309735*x^8 + 1000206160*x^9 + 139190784*x^10 + 5654000*x^11 + 37281*x^12)/(1-x)^16.
a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16).
Showing 1-8 of 8 results.