cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 146 results. Next

A322906 The number of zeros in the fundamental Pisano period of the 3-Fibonacci numbers A006190 modulo n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 2, 2, 1, 4, 2, 1, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 4, 4, 1, 2, 4, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 4, 2, 1, 2, 2, 1, 2, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 4, 2, 2, 2, 2, 1, 2, 1, 4, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Jianing Song, Jan 05 2019

Keywords

Comments

a(n) is the multiplicative order of A006190(A322907(n)+1) modulo n.
a(n) has value 1, 2 or 4. This is because A006190(k,m+1)^4 == 1 (mod A006190(k,m)).
Conjecture: For primes p == 1, 9, 17, 25, 49, 81 (mod 104), the probability of a(p^e) taking on the value 1, 2, 4 is 1/6, 2/3, 1/6, respectively; for primes p == 29, 53, 61, 69, 77, 101 (mod 104), the probability of a(p^e) taking on the value 1, 4 is 1/2, 1/2, respectively.

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = k*x(n+1) + x(n). Then the periods, ranks and the ratios of the periods to the ranks modulo a given integer n are given by:
k = 1: A001175 (periods), A001177 (ranks), A001176 (ratios).
k = 2: A175181 (periods), A214028 (ranks), A214027 (ratios).
k = 3: A175182 (periods), A322907 (ranks), this sequence (ratios).

Programs

  • PARI
    A006190(m) = ([3, 1; 1, 0]^m)[2, 1]
    a(n) = my(i=1); while(A006190(i)%n!=0, i++); znorder(Mod(A006190(i+1), n))

Formula

For n > 2, T(n,k) = 4 iff A322907(n) is odd; 1 iff A322907(n) is even but not divisible by 4; 2 iff A322907(n) is divisible by 4.
For primes p == 3, 23, 27, 35, 43, 51 (mod 52), a(p^e) = 1.
For primes p == 5, 21, 33, 37, 41, 45 (mod 52), a(p^e) = 4.
For primes p == 7, 11, 15, 19, 31, 47 (mod 52), a(p^e) = 2.
a(13^e) = 4. a(2^e) = 1 if e = 1, 2 and 2 if e >= 3.
a(n) = A175182(n)/A322907(n).

A309586 Primes p with 1 zero in a fundamental period of A006190 mod p.

Original entry on oeis.org

2, 3, 23, 43, 53, 61, 79, 101, 103, 107, 127, 131, 139, 173, 179, 191, 199, 211, 251, 263, 277, 283, 311, 347, 367, 419, 433, 439, 443, 467, 491, 503, 523, 547, 563, 569, 571, 599, 607, 647, 659, 677, 719, 727, 751, 757, 823, 829, 859, 881, 883, 887, 907
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A322906(p) = 1.
For p > 2, p is in this sequence if and only if A175182(p) == 2 (mod 4), and if and only if A322907(p) == 2 (mod 4). For a proof of the equivalence between A322906(p) = 1 and A322907(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 3, 23, 27, 35, 43, 51 modulo 52. This corresponds to case (3) for k = 11 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | this seq
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 900, if(A322906(p)==1, print1(p, ", ")))

A309587 Primes p with 2 zeros in a fundamental period of A006190 mod p.

Original entry on oeis.org

7, 11, 17, 19, 31, 47, 59, 67, 71, 83, 113, 151, 163, 167, 223, 227, 239, 257, 271, 307, 313, 331, 337, 359, 379, 383, 431, 463, 479, 487, 499, 521, 587, 601, 619, 631, 641, 643, 673, 683, 691, 739, 743, 787, 809, 811, 827, 839, 863, 947, 967, 983
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A322906(p) = 2.
For p > 2, p is in this sequence if and only if 8 divides A175182(p), and if and only if 4 divides A322907(p). For a proof of the equivalence between A322906(p) = 2 and 4 dividing A322907(p), see Section 2 of my link below.
This sequence contains all primes congruent to 7, 11, 15, 19, 31, 47 modulo 52. This corresponds to case (2) for k = 11 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | this seq
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 1000, if(A322906(p)==2, print1(p, ", ")))

A309588 Primes p with 4 zeros in a fundamental period of A006190 mod p.

Original entry on oeis.org

5, 13, 29, 37, 41, 73, 89, 97, 109, 137, 149, 157, 181, 193, 197, 229, 233, 241, 269, 281, 293, 317, 349, 353, 373, 389, 397, 401, 409, 421, 449, 457, 461, 509, 541, 557, 577, 593, 613, 617, 653, 661, 701, 709, 733, 761, 769, 773, 797, 821, 853, 857, 877
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A322906(p) = 4.
For p > 2, p is in this sequence if and only if A175182(p) == 4 (mod 8), and if and only if A322907(p) is odd. For a proof of the equivalence between A322906(p) = 4 and A322907(p) being odd, see Section 2 of my link below.
This sequence contains all primes congruent to 5, 21, 33, 37, 41, 45 modulo 52. This corresponds to case (1) for k = 11 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | this seq
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 900, if(A322906(p)==4, print1(p, ", ")))

A309591 Numbers k with 1 zero in a fundamental period of A006190 mod k.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 23, 27, 36, 43, 46, 53, 54, 61, 69, 79, 81, 86, 92, 101, 103, 106, 107, 108, 122, 127, 129, 131, 138, 139, 158, 159, 162, 172, 173, 179, 183, 191, 199, 202, 206, 207, 211, 212, 214, 237, 243, 244, 251, 254, 258, 262, 263, 276
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 1.
The odd numbers k satisfy A175182(k) == 2 (mod 4).

Crossrefs

Cf. A175182.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | this seq
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 300, if(A322906(k)==1, print1(k, ", ")))

A309592 Numbers k with 2 zeros in a fundamental period of A006190 mod k.

Original entry on oeis.org

7, 8, 11, 14, 15, 16, 17, 19, 20, 21, 22, 24, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 42, 44, 45, 47, 48, 49, 51, 52, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75, 76, 77, 78, 80, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 2.
This sequence contains all numbers k such that 4 divides A322907(k). As a consequence, this sequence contains all numbers congruent to 7, 11, 15, 19, 31, 47 modulo 52.
This sequence contains all odd numbers k such that 8 divides A175182(k).

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | this seq
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 100, if(A322906(k)==2, print1(k, ", ")))

A309593 Numbers k with 4 zeros in a fundamental period of A006190 mod k.

Original entry on oeis.org

5, 10, 13, 25, 26, 29, 37, 41, 50, 58, 65, 73, 74, 82, 89, 97, 109, 125, 130, 137, 145, 146, 149, 157, 169, 178, 181, 185, 193, 194, 197, 205, 218, 229, 233, 241, 250, 269, 274, 281, 290, 293, 298, 314, 317, 325, 338, 349, 353, 362, 365, 370, 373, 377
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 4.
Also numbers k such that A214027(k) is odd.

Crossrefs

Cf. A322907.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | this seq
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 400, if(A322906(k)==4, print1(k, ", ")))

A175182 Pisano period of the 3-Fibonacci numbers A006190.

Original entry on oeis.org

1, 3, 2, 6, 12, 6, 16, 12, 6, 12, 8, 6, 52, 48, 12, 24, 16, 6, 40, 12, 16, 24, 22, 12, 60, 156, 18, 48, 28, 12, 64, 48, 8, 48, 48, 6, 76, 120, 52, 12, 28, 48, 42, 24, 12, 66, 96, 24, 112, 60, 16, 156, 26, 18, 24, 48, 40, 84, 24, 12, 30, 192, 48, 96, 156, 24, 136, 48, 22, 48, 144
Offset: 1

Views

Author

R. J. Mathar, Mar 01 2010

Keywords

Comments

Period of the sequence defined by reading A006190 modulo n.

Crossrefs

Programs

  • Maple
    F := proc(k,n) option remember; if n <= 1 then n; else k*procname(k,n-1)+procname(k,n-2) ; end if; end proc:
    Pper := proc(k,m) local cha, zer,n,fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k,n) mod m ; cha := [op(cha),fmodm] ; if fmodm = 0 then zer := [op(zer),n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2],cha) ] = [ op(zer[2]+1..zer[3],cha) ] and [op(1..zer[2],cha)] = [ op(zer[3]+1..zer[4],cha) ] and [op(1..zer[2],cha)] = [ op(zer[4]+1..zer[5],cha) ] then return zer[2] ; elif [op(1..zer[3],cha) ] = [ op(zer[3]+1..zer[5],cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:
    k := 3 ; seq( Pper(k,m),m=1..80) ;
  • Mathematica
    Table[s = t = Mod[{0, 1}, n]; cnt = 1; While[tmp = Mod[3*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}] (* Vincenzo Librandi, Dec 20 2012, T. D. Noe *)

A327653 Composite numbers k coprime to 13 such that k divides A006190(k-Kronecker(13,k)).

Original entry on oeis.org

10, 119, 649, 1189, 1763, 3599, 4187, 5559, 6681, 12095, 12403, 12685, 12871, 12970, 14041, 14279, 15051, 16109, 19043, 22847, 23479, 24769, 26795, 28421, 30743, 30889, 31631, 31647, 33919, 34997, 37949, 38503, 39203, 41441, 46079, 48577, 49141, 50523, 50545, 53301, 56279, 58081, 58589
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (a) holds for k, where m = 3.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 360 such k <= 10^5 and 1506 such k <= 10^6, while there are only 62 terms <= 10^5 and 197 terms <= 10^6 in this sequence.
Also composite numbers k coprime to 13 such that A322907(k) divides k - Kronecker(13,k).

Examples

			A006190(9) = 12970 which is divisible by 10, so 10 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 this seq
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
* k is composite and coprime to m^2 + 4.
Cf. A006190, A322907, A011583 ({Kronecker(13,n)}).

Programs

  • PARI
    seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    isA327653(n)=!isprime(n) && !seqmod(n-Kronecker(13,n), n) && gcd(n,13)==1 && n>1

A322907 Entry points for the 3-Fibonacci numbers A006190.

Original entry on oeis.org

1, 3, 2, 6, 3, 6, 8, 6, 6, 3, 4, 6, 13, 24, 6, 12, 8, 6, 20, 6, 8, 12, 22, 6, 15, 39, 18, 24, 7, 6, 32, 24, 4, 24, 24, 6, 19, 60, 26, 6, 7, 24, 42, 12, 6, 66, 48, 12, 56, 15, 8, 78, 26, 18, 12, 24, 20, 21, 12, 6, 30, 96, 24, 48, 39, 12, 68, 24, 22, 24, 72, 6
Offset: 1

Views

Author

Jianing Song, Jan 05 2019

Keywords

Comments

a(n) is the smallest k > 0 such that n divides A006190(k).
a(n) is also called the rank of A006190(n) modulo n.
For primes p == 1, 9, 17, 25, 29, 49 (mod 52), a(p) divides (p - 1)/2.
For primes p == 3, 23, 27, 35, 43, 51 (mod 52), a(p) divides p - 1, but a(p) does not divide (p - 1)/2.
For primes p == 5, 21, 33, 37, 41, 45 (mod 52), a(p) divides (p + 1)/2.
For primes p == 7, 11, 15, 19, 31, 47 (mod 52), a(p) divides p + 1, but a(p) does not divide (p + 1)/2.
a(n) <= (12/7)*n for all n, where the equality holds if and only if n = 2*7^e, e >= 1.

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = k*x(n+1) + x(n). Then the periods, ranks and the ratios of the periods to the ranks modulo a given integer n are given by:
k = 1: A001175 (periods), A001177 (ranks), A001176 (ratios).
k = 2: A175181 (periods), A214028 (ranks), A214027 (ratios).
k = 3: A175182 (periods), this sequence (ranks), A322906 (ratios).
Cf. A006190.

Programs

  • PARI
    A006190(m) = ([3, 1; 1, 0]^m)[2, 1]
    a(n) = my(i=1); while(A006190(i)%n!=0, i++); i

Formula

a(m*n) = a(m)*a(n) if gcd(m, n) = 1.
For odd primes p, a(p^e) = p^(e-1)*a(p) if p^2 does not divide a(p). Any counterexample would be a 3-Wall-Sun-Sun prime.
a(2^e) = 3 if e = 1, 6 if e = 2 and 3*2^(e-2) if e >= 3. a(13^e) = 13^e, e >= 1.
Showing 1-10 of 146 results. Next