cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006253 Number of perfect matchings (or domino tilings) in C_4 X P_n.

Original entry on oeis.org

1, 2, 9, 32, 121, 450, 1681, 6272, 23409, 87362, 326041, 1216800, 4541161, 16947842, 63250209, 236052992, 880961761, 3287794050, 12270214441, 45793063712, 170902040409, 637815097922, 2380358351281, 8883618307200, 33154114877521, 123732841202882
Offset: 0

Views

Author

Keywords

Comments

Number of tilings of a box with sides 2 X 2 X n in R^3 by boxes of sides 2 X 1 X 1 (3-dimensional dominoes). - Frans J. Faase
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Also stacking bricks.
a(n)*(-1)^n = (1-T(n+1,-2))/3, n>=0, with Chebyshev's polynomials T(n,x) of the first kind, is the r=-2 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found. - Wolfdieter Lang, Oct 18 2004
Partial sums of A217233. - Bruno Berselli, Oct 01 2012
The sequence is the case P1 = 2, P2 = -8, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014

Examples

			G.f. = 1 + 2*x + 9*x^2 + 32*x^3 + 121*x^4 + 450*x^5 + ... - _Michael Somos_, Mar 17 2022
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 360.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002530, A004003, A006125, A217233 (first differences), A109437 (partial sums).
Column k=2 of A181206, A189650, A233308.
Cf. A100047.

Programs

  • GAP
    a:=[1,2,9];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Nov 16 2018
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)/(1-3*x-3*x^2+x^3))); // G. C. Greubel, Nov 16 2018
    
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 3 x - 3 x^2 + x^3), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 15 2012 *)
    RecurrenceTable[{a[1] == 1, a[2] == 2, a[n] == BitXor[1, a[n - 1]]^2/a[n - 2]}, a, {n, 30}] (* Jon Maiga, Nov 16 2018 *)
    LinearRecurrence[{3,3,-1}, {1,2,9}, 30] (* G. C. Greubel, Nov 16 2018 *)
    a[ n_] := (-1)^n * ChebyshevU[n, Sqrt[-1/2]]^2; (* Michael Somos, Mar 17 2022 *)
  • PARI
    a(n)=(sqrt(3)+2)^(n+1) \/ 6 \\ Charles R Greathouse IV, Aug 18 2016
    
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,3,3]^n*[1;2;9])[1,1] \\ Charles R Greathouse IV, Aug 18 2016
    
  • PARI
    Vec((1 - x) / ((1 + x)*(1 - 4*x + x^2)) + O(x^40)) \\ Colin Barker, Dec 16 2017
    
  • PARI
    {a(n) = simplify((-1)^n * polchebyshev(n, 2, quadgen(-8)/2)^2)}; /* Michael Somos, Mar 17 2022 */
    
  • Sage
    s=((1-x)/(1-3*x-3*x^2+x^3)).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 16 2018
    

Formula

G.f.: (1-x)/((1+x)*(1-4*x+x^2)) = (1-x)/(1-3*x-3*x^2+x^3). - Simon Plouffe in his 1992 dissertation; typo corrected by Vincenzo Librandi, Oct 15 2012
Nearest integer to (1/6)*(2+sqrt(3))^(n+1). - Don Knuth, Jul 15 1995
For n >= 4, a(n) = 3a(n-1) + 3a(n-2) - a(n-3). - Avi Peretz (njk(AT)netvision.net.il), Mar 30 2001
For n >= 3, a(n) = 4a(n-1) - a(n-2) + 2*(-1)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 14 2001
From Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 11 2001: The values are a(1) = 2 * 1^2, a(2) = 3^2, a(3) = 2 * 4^2, a(4) = 11^2, a(5) = 2 * 15^2, ... and in general for odd n a(n) is twice a square, for even n a(n) is a square. If we define b(n) by b(n) = sqrt(a(n)) for even n, b(n) = sqrt(a(n)/2) for odd n then apart from the first 2 elements b(n) is A002530(n+1).
a(n) + a(n+1) = A001835(n+2). - R. J. Mathar, Dec 06 2013
From Peter Bala, Apr 03 2014: (Start)
a(n) = |U(n,i/sqrt(2))|^2 where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n-1) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 2; 1, 1] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = (2*(-1)^n + (2-sqrt(3))^(1+n) + (2+sqrt(3))^(1+n)) / 6. - Colin Barker, Dec 16 2017
a(n) = (1 XOR a(n-1))^2/a(n-2). - Jon Maiga, Nov 16 2018
a(n) = a(-2-n) for all n in Z. - Michael Somos, Mar 17 2022
INVERT transform of sequence p(n), n > 0, where p is the number of nonreducible tilings by height of 2 X 2 X n using dicubes; p is (2, 5, 4, 4, 4, 4...). - Nicolas Bělohoubek, Jun 04 2024