A006261 a(n) = Sum_{k=0..5} binomial(n,k).
1, 2, 4, 8, 16, 32, 63, 120, 219, 382, 638, 1024, 1586, 2380, 3473, 4944, 6885, 9402, 12616, 16664, 21700, 27896, 35443, 44552, 55455, 68406, 83682, 101584, 122438, 146596, 174437, 206368, 242825, 284274, 331212, 384168, 443704, 510416, 584935, 667928, 760099, 862190
Offset: 0
Examples
a(7) = 120 because the first six terms in the 7th row of Pascal's triangle 1 + 7 + 21 + 35 + 35 + 21 = 120. - _Geoffrey Critzer_, Jan 19 2009
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- S. C. Chan, Letter to N. J. A. Sloane, Oct. 1975
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- R. K. Guy, Letter to N. J. A. Sloane
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Reinhard Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Haskell
a006261 = sum . take 6 . a007318_row -- Reinhard Zumkeller, Nov 24 2012
-
Magma
[(n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
-
Maple
A006261:=(z**2-z+1)*(3*z**2-3*z+1)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
-
Mathematica
CoefficientList[ Series[(1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120) Exp[x], {x, 0, 52}], x]*Table[n!, {n, 0, 52}]
-
PARI
a(n)=sum(k=0,5,binomial(n,k)) \\ Charles R Greathouse IV, Apr 08 2016
-
Python
A006261_list, m = [], [1, -3, 4, -2, 1, 1] for _ in range(10**2): A006261_list.append(m[-1]) for i in range(5): m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
Sage
[binomial(n,1)+binomial(n,3)+binomial(n,5) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
Formula
a(n) = A057703(n) + 1.
a(n) = binomial(n+1, 5) + binomial(n+1, 3) + binomial(n+1, 1). - Len Smiley, Oct 20 2001
G.f.: (1 - 4*x + 7*x^2 - 6*x^3 + 3*x^4)/(1-x)^6. - Geoffrey Critzer, Jan 19 2009
E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120)*exp(x).
a(n) = (n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120. - Reinhard Zumkeller, Jun 17 2009
a(n) = a(n-1) + A000127(n-1). - Christian Schroeder, Jan 04 2016
Comments