cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006261 a(n) = Sum_{k=0..5} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 63, 120, 219, 382, 638, 1024, 1586, 2380, 3473, 4944, 6885, 9402, 12616, 16664, 21700, 27896, 35443, 44552, 55455, 68406, 83682, 101584, 122438, 146596, 174437, 206368, 242825, 284274, 331212, 384168, 443704, 510416, 584935, 667928, 760099, 862190
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from S. C. Chan, Jun 10 1975

Keywords

Comments

a(n) is the sum of the first six terms of the n-th row in Pascal's triangle. - Geoffrey Critzer, Jan 19 2009
Also the interpolating polynomial for the divisors of 32: {a(k): 0 <= k < 6} = {1,2,4,8,16,32}. - Reinhard Zumkeller, Jun 17 2009
a(n) is the maximal number of regions in 5-space formed by n-1 4-dimensional hypercubes. - Carl Schildkraut, May 26 2015
a(n) is the number of binary words of length n matching the regular expression 1*0*1*0*1*0*. A000124, A000125, A000127 count binary words of the form 0*1*0*, 1*0*1*0*, and 0*1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(7) = 120 because the first six terms in the 7th row of Pascal's triangle 1 + 7 + 21 + 35 + 35 + 21 = 120. - _Geoffrey Critzer_, Jan 19 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006261 = sum . take 6 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Maple
    A006261:=(z**2-z+1)*(3*z**2-3*z+1)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[
      Series[(1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120) Exp[x], {x, 0,
        52}], x]*Table[n!, {n, 0, 52}]
  • PARI
    a(n)=sum(k=0,5,binomial(n,k)) \\ Charles R Greathouse IV, Apr 08 2016
  • Python
    A006261_list, m = [], [1, -3, 4, -2, 1, 1]
    for _ in range(10**2):
        A006261_list.append(m[-1])
        for i in range(5):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [binomial(n,1)+binomial(n,3)+binomial(n,5) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = A057703(n) + 1.
a(n) = binomial(n+1, 5) + binomial(n+1, 3) + binomial(n+1, 1). - Len Smiley, Oct 20 2001
G.f.: (1 - 4*x + 7*x^2 - 6*x^3 + 3*x^4)/(1-x)^6. - Geoffrey Critzer, Jan 19 2009
E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120)*exp(x).
a(n) = (n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120. - Reinhard Zumkeller, Jun 17 2009
a(n) = a(n-1) + A000127(n-1). - Christian Schroeder, Jan 04 2016