cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006411 Number of nonseparable tree-rooted planar maps with n + 2 edges and 3 vertices.

Original entry on oeis.org

3, 20, 75, 210, 490, 1008, 1890, 3300, 5445, 8580, 13013, 19110, 27300, 38080, 52020, 69768, 92055, 119700, 153615, 194810, 244398, 303600, 373750, 456300, 552825, 665028, 794745, 943950, 1114760, 1309440, 1530408, 1780240, 2061675, 2377620, 2731155, 3125538
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A342984.

Programs

  • Magma
    [n*(n+1)*(n+2)^2*(n+3)/24: n in [1..50]]; // Vincenzo Librandi, May 19 2011
  • Maple
    A006411:=n->n*(n+1)*(n+2)^2*(n+3)/24: seq(A006411(n), n=1..50); # Wesley Ivan Hurt, Jul 15 2017
  • Mathematica
    CoefficientList[Series[x (3+2x)/(1-x)^6,{x,0,40}],x] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,3,20,75,210,490},40] (* Harvey P. Dale, Dec 24 2013 *)

Formula

G.f.: x*(3+2*x)/(1-x)^6.
a(n) = n*(n+1)*(n+2)^2*(n+3)/24. - Bruno Berselli, May 17 2011
a(n) = A027777(n)/2. - Zerinvary Lajos, Mar 23 2007
a(n) = binomial(n+2,n)*binomial(n+2,n-1) - binomial(n+2,n+1)*binomial(n+2,n-2). - J. M. Bergot, Apr 07 2013
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Dec 24 2013
Sum_{n>=1} 1/a(n) = 2*Pi^2 - 58/3. - Jaume Oliver Lafont, Jul 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2 + 16*log(2) - 62/3. - Amiram Eldar, Jan 28 2022

Extensions

G.f. adapted to the offset by Bruno Berselli, May 17 2011