cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342984 Triangle read by rows: T(n,k) is the number of nonseparable tree-rooted planar maps with n edges and k faces, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 0, 3, 3, 0, 0, 4, 20, 4, 0, 0, 5, 75, 75, 5, 0, 0, 6, 210, 604, 210, 6, 0, 0, 7, 490, 3150, 3150, 490, 7, 0, 0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0, 0, 9, 1890, 40788, 170793, 170793, 40788, 1890, 9, 0, 0, 10, 3300, 115500, 829920, 1565844, 829920, 115500, 3300, 10, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
A tree-rooted planar map is a planar map with a distinguished spanning tree.
For k >= 2, column k is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  1, 1;
  0, 2,    0;
  0, 3,    3,     0;
  0, 4,   20,     4,     0;
  0, 5,   75,    75,     5,     0;
  0, 6,  210,   604,   210,     6,    0;
  0, 7,  490,  3150,  3150,   490,    7, 0;
  0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0;
  ...
		

Crossrefs

Columns (and diagonals) 3..5 are A006411, A006412, A006413.
Row sums are A004304.

Programs

  • PARI
    \\ here F(n,y) gives A342982 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    H(n)={my(g=F(n,y), v=Vec(subst(g, x, serreverse(x*g^2)))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f. A(x,y) satisfies F(x,y) = A(x*F(x,y)^2,y) where F(x,y) is the g.f. of A342982.

A006412 Number of nonseparable tree-rooted planar maps with n + 3 edges and 4 vertices.

Original entry on oeis.org

4, 75, 604, 3150, 12480, 40788, 115500, 292578, 677820, 1459315, 2954952, 5679700, 10438272, 18449760, 31511880, 52213596, 84206100, 132543411, 204105220, 308116050, 456776320, 666022500, 956435220, 1354315950, 1892954700, 2614113099, 3569749200, 4824012424
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A342984.

Programs

  • Mathematica
    A006412[n_] := Binomial[n + 5, 6]*(n + 3)*(n*(13*n + 57) + 14)/84;
    Array[A006412, 30] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n) = {binomial(n+5,6)*(n + 3)*(13*n^2 + 57*n + 14)/84} \\ Andrew Howroyd, Apr 05 2021

Formula

a(n) = 4 * binomial(n + 4, 5) + 51 * binomial(n + 4, 6) + 163 * binomial(n + 4, 7) + 194 * binomial(n + 4, 8) + 78 * binomial(n + 4, 9). - Sean A. Irvine, Apr 03 2017
a(n) = binomial(n+5,6)*(n + 3)*(13*n^2 + 57*n + 14)/84. - Andrew Howroyd, Apr 05 2021
G.f.: x*(4 + 35*x + 34*x^2 + 5*x^3)/(1 - x)^10. - Stefano Spezia, Aug 19 2025

Extensions

Terms a(11) and beyond from Andrew Howroyd, Apr 05 2021

A006413 Number of nonseparable tree-rooted planar maps with n + 4 edges and 5 vertices.

Original entry on oeis.org

5, 210, 3150, 27556, 170793, 829920, 3359356, 11786190, 36845718, 104719524, 274707420, 672982128, 1554007910, 3407724936, 7139933088, 14366348780, 27878652291, 52364814150, 95497666810, 169546939380, 293722986375, 497527759560, 825473130300, 1343631834090
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A342984.

Programs

  • Mathematica
    A006413[n_] := Binomial[n + 7, 8]*(n + 4)*(n*(n*(n*(23*n + 279) + 941) + 599) + 138)/1980;
    Array[A006413, 25] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n) = {binomial(n+7, 8)*(n + 4)*(23*n^4 + 279*n^3 + 941*n^2 + 599*n + 138)/1980} \\ Andrew Howroyd, Apr 05 2021

Formula

a(n) = 5 * binomial(n + 6, 7) + 170 * binomial(n + 6, 8) + 1440 * binomial(n + 6, 9) + 4906 * binomial(n + 6, 10) + 7927 * binomial(n + 6, 11) + 6090 * binomial(n + 6, 12) + 1794 * binomial(n + 6, 13). - Sean A. Irvine, Apr 03 2017
a(n) = binomial(n+7,8)*(n + 4)*(23*n^4 + 279*n^3 + 941*n^2 + 599*n + 138)/1980. - Andrew Howroyd, Apr 05 2021
G.f.: x*(5 + 140*x + 665*x^2 + 746*x^3 + 224*x^4 + 14*x^5)/(1 - x)^14. - Stefano Spezia, Aug 19 2025

Extensions

Terms a(10) and beyond from Andrew Howroyd, Apr 05 2021

A027777 a(n) = 2*(n+1)*binomial(n+2,4).

Original entry on oeis.org

6, 40, 150, 420, 980, 2016, 3780, 6600, 10890, 17160, 26026, 38220, 54600, 76160, 104040, 139536, 184110, 239400, 307230, 389620, 488796, 607200, 747500, 912600, 1105650, 1330056, 1589490, 1887900, 2229520, 2618880, 3060816, 3560480, 4123350, 4755240, 5462310
Offset: 2

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 7-subsequences of [ 1, n ] with just 2 contiguous pairs.

Crossrefs

Equals second right hand column of A163934. - Johannes W. Meijer, Oct 16 2009
Cf. A006411.

Programs

  • Mathematica
    Table[2(n+1)Binomial[n+2,4],{n,2,35}]  (* Harvey P. Dale, Feb 03 2011 *)

Formula

G.f.: 2*(3+2x)*x^2/(1-x)^6.
a(n) = 2*A006411(n+1).
a(n) = C(n+1, 3)*C(n+2, 2) - Zerinvary Lajos, May 13 2005, corrected by R. J. Mathar, Feb 13 2016
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi^2 - 29/3.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/2 + 8*log(2) - 31/3. (End)

A214457 Table read by antidiagonals in which entry T(n,k) in row n and column k gives the number of possible rhombus tilings of an octagon with interior angles of 135 degrees and sequences of side lengths {n, k, 1, 1, n, k, 1, 1} (as the octagon is traversed), n,k in {1,2,3,...}.

Original entry on oeis.org

8, 20, 20, 40, 75, 40, 70, 210, 210, 70, 112, 490, 784, 490, 112, 168, 1008, 2352, 2352, 1008, 168, 240, 1890, 6048, 8820, 6048, 1890, 240, 330, 3300, 13860, 27720, 27720, 13860, 3300, 330, 440, 5445, 29040, 76230, 104544, 76230, 29040, 5445, 440
Offset: 1

Views

Author

L. Edson Jeffery, Jul 18 2012

Keywords

Comments

Proof of the formula for T(n,k) is given in [Elnitsky].
So-called "generalized Narayana numbers" (see A145596), linking rhombus tilings of polygons to certain walks or paths through the square lattice.

Examples

			See [Jeffery]. T(1,1) = 8 because there are eight ways to tile the proposed octagon with rhombuses.
Table begins as
    8    20    40     70    112  ...
   20    75   210    490   1008  ...
   40   210   784   2352   6048  ...
   70   490  2352   8820  27720  ...
  112  1008  6048  27720  76230  ...
  ...
		

Crossrefs

Empirical: T(1,n) = T(n,1) = 2*A000292(n+1); T(2,n) = T(n,2) = A006411(n+1); T(n,n) = A145600(n+1).

Programs

  • Mathematica
    Table[2*(# + k + 1)!*(# + k + 2)!/(#!*k!*(# + 2)!*(k + 2)!) &[n - k + 1], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Feb 26 2024 *)

Formula

T(n,k) = 2*(n+k+1)!*(n+k+2)!/[n!*k!*(n+2)!*(k+2)!].

A347056 Triangle read by rows: T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6, 0 <= k <= n.

Original entry on oeis.org

1, 3, 4, 6, 16, 10, 10, 40, 50, 20, 15, 80, 150, 120, 35, 21, 140, 350, 420, 245, 56, 28, 224, 700, 1120, 980, 448, 84, 36, 336, 1260, 2520, 2940, 2016, 756, 120, 45, 480, 2100, 5040, 7350, 6720, 3780, 1200, 165, 55, 660, 3300, 9240, 16170, 18480, 13860, 6600, 1815, 220
Offset: 0

Views

Author

Luc Rousseau, Aug 14 2021

Keywords

Comments

This triangle is T[3] in the sequence (T[p]) of triangles defined by: T[p](n,k) = (k+p)*(n+p-1)!/(k!*(n-k)!*p!) and T[0](0,0)=1.
Riordan triangle (1/(1-x)^3, x/(1-x)) with column k scaled with A000292(k+1) = binomial(k+3, 3), for k >= 0. - Wolfdieter Lang, Sep 30 2021

Examples

			T(6,2) = (6+1)*(6+2)*(2+3)*binomial(6,2)/6 = 7*8*5*15/6 = 700.
The triangle T begins:
n \ k  0   1    2     3     4     5     6     7     8    9  10 ...
0:     1
1:     3   4
2:     6  16   10
3:    10  40   50    20
4:    15  80  150   120    35
5:    21 140  350   420   245    56
6:    28 224  700  1120   980   448    84
7:    36 336 1260  2520  2940  2016   756   120
8:    45 480 2100  5040  7350  6720  3780  1200   165
9:    55 660 3300  9240 16170 18480 13860  6600  1815  220
10:   66 880 4950 15840 32340 44352 41580 26400 10890 2640 286
... - _Wolfdieter Lang_, Sep 30 2021
		

Crossrefs

Cf. A097805 (p=0), A103406 (p=1), A124932 (essentially p=2).
From Wolfdieter Lang, Sep 30 2021: (Start)
Columns (with leading zeros): A000217(n+1), 4*A000294, 10*A000332(n+2), 20*A000389(n+2), 35*A000579(n+2), 56*A000580(n+2), 84*A000581(n+2), 120*A000582(n+2), ...
Diagonals: A000292(k+1), A004320(k+1), 2*A006411(k+1), 10*A040977, ... (End)

Programs

  • PARI
    T(p,n,k)=if(n==0&&p==0,1,((k+p)*(n+p-1)!)/(k!*(n-k)!*p!))
    for(n=0,9,for(k=0,n,print1(T(3,n,k),", ")))

Formula

T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6.
G.f. column k: x^k*binomial(k+3, 3)/(1 - x)^(k+3), for k >= 0. - Wolfdieter Lang, Sep 30 2021
Showing 1-6 of 6 results.