cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006411 Number of nonseparable tree-rooted planar maps with n + 2 edges and 3 vertices.

Original entry on oeis.org

3, 20, 75, 210, 490, 1008, 1890, 3300, 5445, 8580, 13013, 19110, 27300, 38080, 52020, 69768, 92055, 119700, 153615, 194810, 244398, 303600, 373750, 456300, 552825, 665028, 794745, 943950, 1114760, 1309440, 1530408, 1780240, 2061675, 2377620, 2731155, 3125538
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A342984.

Programs

  • Magma
    [n*(n+1)*(n+2)^2*(n+3)/24: n in [1..50]]; // Vincenzo Librandi, May 19 2011
  • Maple
    A006411:=n->n*(n+1)*(n+2)^2*(n+3)/24: seq(A006411(n), n=1..50); # Wesley Ivan Hurt, Jul 15 2017
  • Mathematica
    CoefficientList[Series[x (3+2x)/(1-x)^6,{x,0,40}],x] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,3,20,75,210,490},40] (* Harvey P. Dale, Dec 24 2013 *)

Formula

G.f.: x*(3+2*x)/(1-x)^6.
a(n) = n*(n+1)*(n+2)^2*(n+3)/24. - Bruno Berselli, May 17 2011
a(n) = A027777(n)/2. - Zerinvary Lajos, Mar 23 2007
a(n) = binomial(n+2,n)*binomial(n+2,n-1) - binomial(n+2,n+1)*binomial(n+2,n-2). - J. M. Bergot, Apr 07 2013
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Dec 24 2013
Sum_{n>=1} 1/a(n) = 2*Pi^2 - 58/3. - Jaume Oliver Lafont, Jul 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2 + 16*log(2) - 62/3. - Amiram Eldar, Jan 28 2022

Extensions

G.f. adapted to the offset by Bruno Berselli, May 17 2011

A342984 Triangle read by rows: T(n,k) is the number of nonseparable tree-rooted planar maps with n edges and k faces, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 0, 3, 3, 0, 0, 4, 20, 4, 0, 0, 5, 75, 75, 5, 0, 0, 6, 210, 604, 210, 6, 0, 0, 7, 490, 3150, 3150, 490, 7, 0, 0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0, 0, 9, 1890, 40788, 170793, 170793, 40788, 1890, 9, 0, 0, 10, 3300, 115500, 829920, 1565844, 829920, 115500, 3300, 10, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
A tree-rooted planar map is a planar map with a distinguished spanning tree.
For k >= 2, column k is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  1, 1;
  0, 2,    0;
  0, 3,    3,     0;
  0, 4,   20,     4,     0;
  0, 5,   75,    75,     5,     0;
  0, 6,  210,   604,   210,     6,    0;
  0, 7,  490,  3150,  3150,   490,    7, 0;
  0, 8, 1008, 12480, 27556, 12480, 1008, 8, 0;
  ...
		

Crossrefs

Columns (and diagonals) 3..5 are A006411, A006412, A006413.
Row sums are A004304.

Programs

  • PARI
    \\ here F(n,y) gives A342982 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    H(n)={my(g=F(n,y), v=Vec(subst(g, x, serreverse(x*g^2)))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f. A(x,y) satisfies F(x,y) = A(x*F(x,y)^2,y) where F(x,y) is the g.f. of A342982.

A006413 Number of nonseparable tree-rooted planar maps with n + 4 edges and 5 vertices.

Original entry on oeis.org

5, 210, 3150, 27556, 170793, 829920, 3359356, 11786190, 36845718, 104719524, 274707420, 672982128, 1554007910, 3407724936, 7139933088, 14366348780, 27878652291, 52364814150, 95497666810, 169546939380, 293722986375, 497527759560, 825473130300, 1343631834090
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A342984.

Programs

  • Mathematica
    A006413[n_] := Binomial[n + 7, 8]*(n + 4)*(n*(n*(n*(23*n + 279) + 941) + 599) + 138)/1980;
    Array[A006413, 25] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    a(n) = {binomial(n+7, 8)*(n + 4)*(23*n^4 + 279*n^3 + 941*n^2 + 599*n + 138)/1980} \\ Andrew Howroyd, Apr 05 2021

Formula

a(n) = 5 * binomial(n + 6, 7) + 170 * binomial(n + 6, 8) + 1440 * binomial(n + 6, 9) + 4906 * binomial(n + 6, 10) + 7927 * binomial(n + 6, 11) + 6090 * binomial(n + 6, 12) + 1794 * binomial(n + 6, 13). - Sean A. Irvine, Apr 03 2017
a(n) = binomial(n+7,8)*(n + 4)*(23*n^4 + 279*n^3 + 941*n^2 + 599*n + 138)/1980. - Andrew Howroyd, Apr 05 2021
G.f.: x*(5 + 140*x + 665*x^2 + 746*x^3 + 224*x^4 + 14*x^5)/(1 - x)^14. - Stefano Spezia, Aug 19 2025

Extensions

Terms a(10) and beyond from Andrew Howroyd, Apr 05 2021
Showing 1-3 of 3 results.