A006454 Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.
0, 3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726275, 20720703, 160554240, 703893960, 5454117903, 23911673955, 185279454480, 812293020528, 6294047334435, 27594051024015, 213812329916328, 937385441796000, 7263325169820735, 31843510970040003, 246739243443988680
Offset: 0
Examples
From _Raphie Frank_, Sep 28 2012: (Start) 35*(528 - 15) + 0 = 17955 = a(6), 35*(4095 - 120) + 3 = 139128 = a(7), 35*(17955 - 528) + 15 = 609960 = a(8), 35*(139128 - 4095) + 120 = 4726275 = a(9). (End) From _Raphie Frank_, Feb 02 2013: (Start) a(7) = 139128 and a(9) = 4726275. a(9) = (2*(sqrt(8*a(7) + 1) - 1)/2 + 3*sqrt(a(7) + 1) + 1)^2 - 1 = (2*(sqrt(8*139128 + 1) - 1)/2 + 3*sqrt(139128 + 1) + 1)^2 - 1 = 4726275. a(9) = 1/2*((3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)^2 + (3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)) = 1/2*((3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)^2 + (3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)) = 4726275. (End) From _Vladimir Pletser_, Apr 30 2017: (Start) For n=2, b(n)=5, a(n)=15 For n=5, b(n)=90, a(n)= 4095 For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. (End)
References
- Edward J. Barbeau, Pell's Equation, New York: Springer-Verlag, 2003, p. 17, Exercise 1.2.
- Allan J. Gottlieb, How four dogs meet in a field, and other problems, Technology Review, Jul/August 1973, pp. 73-74.
- Vladimir Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vladimir Pletser, Table of n, a(n) for n = 0..1000 (first 60 terms from Vincenzo Librandi)
- M.A. Bennett and A. Ghadermarzi, Data on Mordell's curve.
- Michael A. Bennett and Amir Ghadermarzi, Mordell's equation : a classical approach, arXiv:1311.7077 [math.NT], 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Jeffrey Shallit, Letter to N. J. A. Sloane, Oct. 1975.
- K. B. Subramaniam, Almost Square Triangular Numbers, The Fibonacci Quarterly, Vol. 37, No. 3 (1999), pp. 194-197.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Crossrefs
Programs
-
Magma
I:=[0,3,15,120,528,4095]; [n le 6 select I[n] else 35*(Self(n-2) - Self(n-4)) + Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 21 2015
-
Maple
A006454:=-3*z*(1+4*z+z**2)/(z-1)/(z**2-6*z+1)/(z**2+6*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,3','2,15'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=b*(b+1)/2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do: # Vladimir Pletser, Apr 30 2017
-
Mathematica
Clear[a]; a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := 6a[n - 2] - a[n - 4]; Array[a, 40]^2 - 1 (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *) LinearRecurrence[{1,34,-34,-1,1},{0,3,15,120,528},30] (* Harvey P. Dale, Feb 18 2023 *)
-
PARI
concat(0, Vec(3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30))) \\ Colin Barker, Apr 30 2017
Formula
a(n) = A006452(n)^2 - 1. - Joerg Arndt, Mar 04 2011
a(n) = 35*(a(n-2) - a(n-4)) + a(n-6). - Raphie Frank, Sep 28 2012
From Raphie Frank, Feb 01 2013: (Start)
a(0) = 0, a(1) = 3, and a(n+2) = (2x + 3y + 1)^2 - 1 = 1/2*((3x + 4y + 1)^2 + (3x + 4y + 1)) where x = (sqrt(8*a(n) + 1) - 1)/2 = A006451(n) = 1/2*(A216134(n + 1) + A216134(n - 1)) and y = sqrt(a(n) + 1) = A006452(n + 1) = 1/2*(A216134(n + 1) - A216134(n - 1)).
Note that A216134(n + 1) = x + y, and A216134(n + 3) = (2x + 3y + 1) + (3x + 4y + 1) = (5x + 7y + 2), where A216134 gives the indices of the Sophie Germain triangular numbers. (End)
a(n) = (1/64)*(((4 + sqrt(2))*(1 -(-1)^(n+1)*sqrt(2))^(2* floor((n+1)/2)) + (4 - sqrt(2))*(1 + (-1)^(n+1)*sqrt(2))^(2*floor((n+1)/2))))^2 - 1. - Raphie Frank, Dec 20 2015
From Vladimir Pletser, Apr 30 2017: (Start)
Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n)) (this sequence), we have:
a(n) = ((8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4))*(8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1)/2). (End)
From Colin Barker, Apr 30 2017: (Start)
G.f.: 3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).
a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5) for n > 4.
(End)
a(n) = (A001109(n/2+1) - 2*A001109(n/2))^2 - 1 if n is even, and (A001109((n+3)/2) - 4*A001109((n+1)/2))^2 - 1 if n is odd (Subramaniam, 1999). - Amiram Eldar, Jan 13 2022
Extensions
Better description from Harvey P. Dale, Jan 28 2001
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Minor edits by N. J. A. Sloane, Oct 24 2009
Comments