cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006454 Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.

Original entry on oeis.org

0, 3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726275, 20720703, 160554240, 703893960, 5454117903, 23911673955, 185279454480, 812293020528, 6294047334435, 27594051024015, 213812329916328, 937385441796000, 7263325169820735, 31843510970040003, 246739243443988680
Offset: 0

Views

Author

Keywords

Comments

Alternative definition: a(n) is triangular and a(n)/2 is the harmonic average of consecutive triangular numbers. See comments and formula section of A005563, of which this sequence is a subsequence. - Raphie Frank, Sep 28 2012
As with the Sophie Germain triangular numbers (A124174), 35 = (a(n) - a(n-6))/(a(n-2) - a(n-4)). - Raphie Frank, Sep 28 2012
Sophie Germain triangular numbers of the second kind as defined in A217278. - Raphie Frank, Feb 02 2013
Triangular numbers m such that m+1 is a square. - Bruno Berselli, Jul 15 2014
From Vladimir Pletser, Apr 30 2017: (Start)
Numbers a(n) which are the triangular number T(b(n)), where b(n) is the sequence A006451(n) of numbers n such that T(n)+1 is a square.
a(n) also gives the x solutions of the 3rd-degree Diophantine Bachet-Mordell equation y^2 = x^3 + K, with y = T(b(n))*sqrt(T(b(n))+1) = A285955(n) and K = T(b(n))^2 = A285985(n), the square of the triangular number of b(n) = A006451(n).
Also: This sequence is a subsequence of A000217(n), namely A000217(A006451(n)). (End)

Examples

			From _Raphie Frank_, Sep 28 2012: (Start)
35*(528 - 15) + 0 = 17955 = a(6),
35*(4095 - 120) + 3 = 139128 = a(7),
35*(17955 - 528) + 15 = 609960 = a(8),
35*(139128 - 4095) + 120 = 4726275 = a(9). (End)
From _Raphie Frank_, Feb 02 2013: (Start)
a(7) = 139128 and a(9) = 4726275.
a(9) = (2*(sqrt(8*a(7) + 1) - 1)/2 + 3*sqrt(a(7) + 1) + 1)^2 - 1 = (2*(sqrt(8*139128 + 1) - 1)/2 + 3*sqrt(139128 + 1) + 1)^2 - 1 = 4726275.
a(9) = 1/2*((3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)^2 + (3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)) = 1/2*((3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)^2 + (3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)) = 4726275. (End)
From _Vladimir Pletser_, Apr 30 2017: (Start)
For n=2, b(n)=5, a(n)=15
For n=5, b(n)=90, a(n)= 4095
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. (End)
		

References

  • Edward J. Barbeau, Pell's Equation, New York: Springer-Verlag, 2003, p. 17, Exercise 1.2.
  • Allan J. Gottlieb, How four dogs meet in a field, and other problems, Technology Review, Jul/August 1973, pp. 73-74.
  • Vladimir Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. sqrt(a(n) + 1) = A006452(n + 1) = A216162(2n + 2) and (sqrt(8a(n) + 1) - 1)/2 = A006451.
Cf. A217278, A124174, A216134. - Raphie Frank, Feb 02 2013
Subsequence of A182334.

Programs

  • Magma
    I:=[0,3,15,120,528,4095]; [n le 6 select I[n] else 35*(Self(n-2) - Self(n-4)) + Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 21 2015
    
  • Maple
    A006454:=-3*z*(1+4*z+z**2)/(z-1)/(z**2-6*z+1)/(z**2+6*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,3','2,15'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=b*(b+1)/2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do: # Vladimir Pletser, Apr 30 2017
  • Mathematica
    Clear[a]; a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := 6a[n - 2] - a[n - 4]; Array[a, 40]^2 - 1 (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
    LinearRecurrence[{1,34,-34,-1,1},{0,3,15,120,528},30] (* Harvey P. Dale, Feb 18 2023 *)
  • PARI
    concat(0, Vec(3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30))) \\ Colin Barker, Apr 30 2017

Formula

a(n) = A006451(n)*(A006451(n)+1)/2.
a(n) = A006452(n)^2 - 1. - Joerg Arndt, Mar 04 2011
a(n) = 35*(a(n-2) - a(n-4)) + a(n-6). - Raphie Frank, Sep 28 2012
From Raphie Frank, Feb 01 2013: (Start)
a(0) = 0, a(1) = 3, and a(n+2) = (2x + 3y + 1)^2 - 1 = 1/2*((3x + 4y + 1)^2 + (3x + 4y + 1)) where x = (sqrt(8*a(n) + 1) - 1)/2 = A006451(n) = 1/2*(A216134(n + 1) + A216134(n - 1)) and y = sqrt(a(n) + 1) = A006452(n + 1) = 1/2*(A216134(n + 1) - A216134(n - 1)).
Note that A216134(n + 1) = x + y, and A216134(n + 3) = (2x + 3y + 1) + (3x + 4y + 1) = (5x + 7y + 2), where A216134 gives the indices of the Sophie Germain triangular numbers. (End)
a(n) = (1/64)*(((4 + sqrt(2))*(1 -(-1)^(n+1)*sqrt(2))^(2* floor((n+1)/2)) + (4 - sqrt(2))*(1 + (-1)^(n+1)*sqrt(2))^(2*floor((n+1)/2))))^2 - 1. - Raphie Frank, Dec 20 2015
From Vladimir Pletser, Apr 30 2017: (Start)
Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n)) (this sequence), we have:
a(n) = ((8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4))*(8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1)/2). (End)
From Colin Barker, Apr 30 2017: (Start)
G.f.: 3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).
a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5) for n > 4.
(End)
a(n) = (A001109(n/2+1) - 2*A001109(n/2))^2 - 1 if n is even, and (A001109((n+3)/2) - 4*A001109((n+1)/2))^2 - 1 if n is odd (Subramaniam, 1999). - Amiram Eldar, Jan 13 2022

Extensions

Better description from Harvey P. Dale, Jan 28 2001
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Minor edits by N. J. A. Sloane, Oct 24 2009