cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006478 a(n) = a(n-1) + a(n-2) + F(n) - 1, a(0) = a(1) = 0, where F() = Fibonacci numbers A000045.

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 18, 38, 76, 147, 277, 512, 932, 1676, 2984, 5269, 9239, 16104, 27926, 48210, 82900, 142055, 242665, 413376, 702408, 1190808, 2014608, 3401833, 5734251, 9650312, 16216602, 27213182, 45608092, 76345851, 127656829, 213230144, 355817324, 593205284
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A001629.
Number of edges in the Fibonacci hypercube FQ(n-2) (defined in the Rispoli and Cosares reference). - Emeric Deutsch, Oct 06 2014
Circuit rank (cyclomatic number) of the n-Fibonacci cube graph. - Eric W. Weisstein, Sep 05 2017

Examples

			G.f. = x^3 + 3*x^4 + 8*x^5 + 18*x^6 + 38*x^7 + 76*x^8 + 147*x^9 + 277*x^10 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006478 n = a006478_list !! (n-3)
    a006478_list = scanl1 (+) $ drop 2 a001629_list
    -- Reinhard Zumkeller, Sep 12 2015
  • Maple
    A006478 := proc(n)
      1 + ((n-5)*combinat[fibonacci](n-1)+(3*n-8)*combinat[fibonacci](n)) / 5;
    end proc:
    seq(A006478(n),n=0..20) ; # R. J. Mathar, Jun 12 2018
  • Mathematica
    CoefficientList[Series[x^3/((1 - x) (1 - x - x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *)
    LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 0, 1, 3, 8}, 20] (* Eric W. Weisstein, Sep 05 2017 *)
    Table[1 + (2 (n + 1) Fibonacci[n] + n Fibonacci[n + 1])/5 - Fibonacci[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Sep 05 2017 *)
  • PARI
    {a(n) = if( n<0, polcoeff( x^2 / ((1 - x) * (1 + x - x^2)^2) + x * O(x^-n), -n), polcoeff( x^3 / ((1 - x) * (1 - x - x^2)^2) + x * O(x^n), n))}; /* Michael Somos, Mar 11 2014 */
    

Formula

a(n) - a(n-1) = A001629(n-1).
a(n) = 1 + ((n-5)*F(n-1) + (3*n-8)*F(n))/5.
G.f.: x^3/((1-x)*(1-x-x^2)^2). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} F(i)*F(k-i). - Benoit Cloitre, Jan 26 2003
a(n) = A175722(-2-n). - Michael Somos, Mar 11 2014
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5). - Eric W. Weisstein, Sep 05 2017
E.g.f.: exp(x) + exp(x/2)*(5*(3*x - 5)*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x - 11)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Jul 24 2022

Extensions

a(0)-a(2) added and offset changed - N. J. A. Sloane, Jun 19 2021
Programs and b-file adapted by Georg Fischer, Jun 21 2021