A006478 a(n) = a(n-1) + a(n-2) + F(n) - 1, a(0) = a(1) = 0, where F() = Fibonacci numbers A000045.
0, 0, 0, 1, 3, 8, 18, 38, 76, 147, 277, 512, 932, 1676, 2984, 5269, 9239, 16104, 27926, 48210, 82900, 142055, 242665, 413376, 702408, 1190808, 2014608, 3401833, 5734251, 9650312, 16216602, 27213182, 45608092, 76345851, 127656829, 213230144, 355817324, 593205284
Offset: 0
Examples
G.f. = x^3 + 3*x^4 + 8*x^5 + 18*x^6 + 38*x^7 + 76*x^8 + 147*x^9 + 277*x^10 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Carlos Alirio Rico Acevedo and Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Gray codes for Fibonacci q-decreasing words, arXiv:2010.09505 [cs.DM], 2020.
- Sergey Kirgizov, Q-bonacci words and numbers, arXiv:2201.00782 [math.CO], 2022.
- K. J. Overholt, Efficiency of the Fibonacci search method, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 92-96.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- F. J. Rispoli and S. Cosares, The Fibonacci hypercube, Australasian J. Combinatorics, 40, 2008, 187-196.
- Eric Weisstein's World of Mathematics, Circuit Rank
- Eric Weisstein's World of Mathematics, Fibonacci Cube Graph
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
Programs
-
Haskell
a006478 n = a006478_list !! (n-3) a006478_list = scanl1 (+) $ drop 2 a001629_list -- Reinhard Zumkeller, Sep 12 2015
-
Maple
A006478 := proc(n) 1 + ((n-5)*combinat[fibonacci](n-1)+(3*n-8)*combinat[fibonacci](n)) / 5; end proc: seq(A006478(n),n=0..20) ; # R. J. Mathar, Jun 12 2018
-
Mathematica
CoefficientList[Series[x^3/((1 - x) (1 - x - x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *) LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 0, 1, 3, 8}, 20] (* Eric W. Weisstein, Sep 05 2017 *) Table[1 + (2 (n + 1) Fibonacci[n] + n Fibonacci[n + 1])/5 - Fibonacci[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Sep 05 2017 *)
-
PARI
{a(n) = if( n<0, polcoeff( x^2 / ((1 - x) * (1 + x - x^2)^2) + x * O(x^-n), -n), polcoeff( x^3 / ((1 - x) * (1 - x - x^2)^2) + x * O(x^n), n))}; /* Michael Somos, Mar 11 2014 */
Formula
a(n) - a(n-1) = A001629(n-1).
a(n) = 1 + ((n-5)*F(n-1) + (3*n-8)*F(n))/5.
G.f.: x^3/((1-x)*(1-x-x^2)^2). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} F(i)*F(k-i). - Benoit Cloitre, Jan 26 2003
a(n) = A175722(-2-n). - Michael Somos, Mar 11 2014
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5). - Eric W. Weisstein, Sep 05 2017
E.g.f.: exp(x) + exp(x/2)*(5*(3*x - 5)*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x - 11)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Jul 24 2022
Extensions
a(0)-a(2) added and offset changed - N. J. A. Sloane, Jun 19 2021
Programs and b-file adapted by Georg Fischer, Jun 21 2021
Comments