A006566 Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.
0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, 14190, 17296, 20825, 24804, 29260, 34220, 39711, 45760, 52394, 59640, 67525, 76076, 85320, 95284, 105995, 117480, 129766, 142880, 156849, 171700, 187460, 204156
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Ed Pegg Jr, Dodecahedral 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2 a006566_list = scanl (+) 0 a093485_list -- Reinhard Zumkeller, Jun 16 2013
-
Magma
[n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
-
Maple
A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[n(3n-1)(3n-2)/2,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *) LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* Harvey P. Dale, Jul 24 2013 *) CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
-
PARI
a(n)=n*(3*n-1)*(3*n-2)/2
Formula
G.f.: x(1 + 16x + 10x^2)/(1 - x)^4.
a(n) = C(n+2,3) + 16 C(n+1,3) + 10 C(n,3).
a(0)=0, a(1)=1, a(2)=20, a(3)=84, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = binomial(3*n,3). a(-n) = - A228888(n). Sum_{n>=1} 1/a(n) = 1/2*( sqrt(3)*Pi - 3*log(3) ). Sum_{n>=1} (-1)^n/a(n) = 1/3*sqrt(3)*Pi - 4*log(2). - Peter Bala, Sep 09 2013
E.g.f.: x*(2 + 18*x + 9*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
From Amiram Eldar, Jan 09 2024: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi - 3*log(3))/2 (A295421).
Sum_{n>=1} (-1)^(n+1)/a(n) = (12*log(2) - sqrt(3)*Pi)/3. (End)
Extensions
More terms from Henry Bottomley, Nov 23 2001
Comments