cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006630 From generalized Catalan numbers.

Original entry on oeis.org

1, 6, 33, 182, 1020, 5814, 33649, 197340, 1170585, 7012200, 42364476, 257854776, 1579730984, 9734161206, 60290077905, 375138262520, 2343880406595, 14699630061270, 92502956574105, 583920410197950, 3696470074992240, 23461536762704040, 149270218961671548
Offset: 0

Views

Author

Keywords

Comments

It appears that this is the self-convolution of A001764 starting 1, 3, 12, ... . - Alon Regev, Aug 07 2015

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A092276.
Closely related to A000139.

Programs

  • Magma
    [2*Binomial(3*n+6, n)/(n+2): n in [0..25]]; // Vincenzo Librandi, Aug 07 2015
    
  • Mathematica
    Table[2 Binomial[3 n+6,n]/(n+2), {n, 0, 25}] (* Vincenzo Librandi, Aug 07 2015 *)
    CoefficientList[Series[(-1 + (2*Sin[(1/3)*ArcSin[(3*Sqrt[3]*Sqrt[x])/2]]) / (Sqrt[3]*Sqrt[x]))^2/x^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2022, after Vladimir Kruchinin *)
  • Maxima
    taylor(((1/sqrt(3/4*x)*sin(1/3*asin(sqrt(27/4*x)))-1)/x)^2,x,0,17); /* Vladimir Kruchinin, Oct 03 2022 */
    
  • Maxima
    makelist(2*binomial(3*n+6, n)/(n+2),n,0,30); /* Vladimir Kruchinin, Oct 03 2022 */
    
  • PARI
    a(n) = 2*binomial(3*n+6, n)/(n+2); \\ Andrew Howroyd, Nov 06 2017
    
  • SageMath
    def A006630(n): return 2*binomial(3*(n+2),n)//(n+2)
    print([A006630(n) for n in range(41)]) # G. C. Greubel, Aug 31 2025

Formula

G.f.: hypergeometric3_F_2([ 2, 8/3, 7/3 ], [ 4, 7/2 ], 27*x/4).
a(n) = 2*binomial(3*n+6, n)/(n+2). - Henry Bottomley, Sep 24 2001
G.f.: (1 - RootOf(x-t*(1-t)^2,t))^(-6) (algebraic function in Maple notation). - Mark van Hoeij, Nov 08 2011
G.f.: ((1/sqrt((3/4)*x)*sin((1/3)*asin(sqrt((27/4)*x)))-1)/x)^2. - Vladimir Kruchinin, Oct 03 2022
a(n) = (n+1)/2 * A000139(n+2). - F. Chapoton, Feb 23 2024

Extensions

More terms from Christopher Lund (clund(AT)san.rr.com), Apr 16 2002
a(21)-a(22) from Vincenzo Librandi, Aug 07 2015