cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006858 Expansion of g.f. x*(1 + x)*(1 + 6*x + x^2)/(1 - x)^7.

Original entry on oeis.org

0, 1, 14, 84, 330, 1001, 2548, 5712, 11628, 21945, 38962, 65780, 106470, 166257, 251720, 371008, 534072, 752913, 1041846, 1417780, 1900514, 2513049, 3281916, 4237520, 5414500, 6852105, 8594586, 10691604, 13198654, 16177505, 19696656, 23831808, 28666352, 34291873
Offset: 0

Views

Author

Keywords

Comments

Arises in enumerating paths in the plane.
a(n+1) is the determinant of the n X n Hankel matrix whose first row is the Catalan numbers C_n (A000108) beginning at C_4 = 14. Example (n=3): det[{{14, 42, 132}, {42, 132, 429}, {132, 429, 1430}}] = 330. - David Callan, Mar 30 2007
0 together with partial sums of A085461. - Arkadiusz Wesolowski, Aug 05 2012

Examples

			G.f. = x + 14*x^2 + 84*x^3 + 330*x^4 + 1001*x^5 + 2548*x^6 + 5712*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Volume 1, 1986, p. 221, Example 4.5.18.

Crossrefs

Programs

  • Maple
    series((x+7*x^2+7*x^3+x^4)/(1-x)^7,x,50);
    b:=binomial; t72b:= proc(a,k) ((a+k+1)/(a+1)) * b(k+2*a+1,k)*b(k+3*a/2+1,k)/(b(k+a/2,k)); end; [seq(t72b(1,k),k=0..40)];
  • Mathematica
    a[n_]:= (n+1)*Binomial[2n+4, 5]/12;
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 17 2017, after Philippe Deléham *)
  • PARI
    a(n) = (n+1)*binomial(2*n+4, 5)/12; \\ Michel Marcus, Oct 13 2016
    
  • Sage
    [(n+1)*binomial(2*n+4, 5)/12 for n in (0..30)] # G. C. Greubel, Dec 14 2021

Formula

a(n) = (n+1)*binomial(2*n+4, 5)/12. - Philippe Deléham, Mar 06 2004
a(n) = a(-2-n) for all n in Z. - Michael Somos, Jun 27 2023
From Amiram Eldar, Jul 09 2023: (Start)
Sum_{n>=1} 1/a(n) = 30*Pi^2 - 295.
Sum_{n>=1} (-1)^(n+1)/a(n) = -15*Pi^2 + 240*Pi - 605. (End)
E.g.f.: exp(x)*x*(180 + 1080*x + 1350*x^2 + 555*x^3 + 84*x^4 + 4*x^5)/180. - Stefano Spezia, Dec 09 2023

Extensions

Edited by N. J. A. Sloane, Oct 20 2007