A006863 Denominator of B_{2n}/(-4n), where B_m are the Bernoulli numbers.
1, 24, 240, 504, 480, 264, 65520, 24, 16320, 28728, 13200, 552, 131040, 24, 6960, 171864, 32640, 24, 138181680, 24, 1082400, 151704, 5520, 1128, 4455360, 264, 12720, 86184, 13920, 1416, 6814407600, 24
Offset: 0
References
- Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Integrals and Asymptotic Expansions, p. 220.
- F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130.
- J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 286.
- Douglas C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003. (The function K(2n), see p. 303.)
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- P. J. Cameron and D. A. Preece, Notes on primitive lambda-roots
- R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1909-10), 232-238.
- G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002.
- Michael Lugo, A little number theory problem (2008)
- Eric Weisstein's World of Mathematics, Eisenstein Series.
- Index entries for sequences related to Bernoulli numbers.
Programs
-
GAP
Concatenation([1], List([1..35], n-> DenominatorRat(Bernoulli(2*n)/(-4*n)) )); # G. C. Greubel, Sep 19 2019
-
Magma
[1] cat [Denominator(Bernoulli(2*n)/(-4*n)):n in [1..35]]; // G. C. Greubel, Sep 19 2019
-
Maple
1,seq(denom(bernoulli(2*n)/(-4*n)), n=1 .. 100); # Robert Israel, Dec 03 2014
-
Mathematica
a[n_] := Denominator[BernoulliB[2n]/(-4n)]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 20 2011 *)
-
PARI
a(n) = if (n == 0, 1, denominator(bernfrac(2*n)/(-4*n))); \\ Michel Marcus, Sep 10 2013
-
Sage
[1]+[denominator(bernoulli(2*n)/(-4*n)) for n in (1..35)] # G. C. Greubel, Sep 19 2019
Formula
B_{2k}/(4k) = -(1/2)*zeta(1-2k). For n > 0, a(n) = gcd k^L (k^{2n}-1) where k ranges over all the integers and L is as large as necessary.
Product of 2^{a+2} (where 2^a exactly divides 2*n) and p^{a+1} (where p is an odd prime such that p-1 divides 2*n and p^a exactly divides 2*n). - Peter J. Cameron, Mar 25 2002
Extensions
Thanks to Michael Somos for helpful comments.
Comments