A007097 Primeth recurrence: a(n+1) = a(n)-th prime.
1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041, 3657500101, 88362852307, 2428095424619, 75063692618249, 2586559730396077, 98552043847093519, 4123221751654370051, 188272405179937051081, 9332039515881088707361, 499720579610303128776791, 28785866289100396890228041
Offset: 0
References
- Lubomir Alexandrov, unpublished notes, circa 1960.
- L. Longeri, Towards understanding nature and the aesthetics of prime numbers, https://www.longeri.org/prime/nature.html [Broken link, but leave the URL here for historical reasons]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Lubomir Alexandrov, On the nonasymptotic prime number distribution, arXiv:math.NT/9811096, 1998.
- Lubomir Alexandrov, "The Eratosthenes Progression p(k+1)=π^{-1}(p(k)), k=0,1,2,..., p(0)=1,4,6,... Determines an Inner Prime Number Distribution Law", Second Int. Conf. "Modern Trends in Computational Physics", Jul 24-29, 2000, Dubna, Russia, Book of Abstracts, p. 19. Available at arXiv:math/0105154 [math.NT], 2001.
- Lubomir Alexandrov, Prime Number Sequences And Matrices Generated By Counting Arithmetic Functions, Communications of the Joint Institute of Nuclear Research, E5-2002-55, Dubna, 2002.
- J. Awbrey, Riffs and Rotes
- R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900 [math.GM], 2014.
- Peter R. Cappello, A Note on a Bijection between Natural Numbers and Rooted Trees, 4th SIAM Conference on Discrete Mathematics, June 1988. See section 3 set S codes of paths (codes are per Matula-Goebel).
- M. Deléglise, Computation of large values of pi(x)
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Robert G. Wilson v, Letter to N. J. A. Sloane, Sep. 1992
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
GAP
P:=Filtered([1..60000],IsPrime);; a:=[1];; for n in [2..10] do a[n]:=P[a[n-1]]; od; a; # Muniru A Asiru, Dec 22 2018
-
Haskell
a007097 n = a007097_list !! n a007097_list = iterate a000040 1 -- Reinhard Zumkeller, Jul 14 2013
-
Maple
seq((ithprime@@n)(1),n=0..10); # Peter Luschny, Oct 16 2012
-
Mathematica
NestList[Prime@# &, 1, 16] (* Robert G. Wilson v, May 30 2006 *)
-
PARI
print1(p=1);until(,print1(","p=prime(p))) \\ M. F. Hasler, Oct 09 2011
Formula
A049084(a(n+1)) = a(n). - Reinhard Zumkeller, Jul 14 2013
a(n)/a(n-1) ~ log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 26 2015
a(n) = prime^{[n]}(1), with the prime function prime(k) = A000040(k), with a(0) = 1. See the name and the programs. - Wolfdieter Lang, Apr 03 2018
Sum_{n>=1} 1/a(n) = A292667. - Amiram Eldar, Oct 15 2020
Extensions
a(15) corrected and a(16)-a(17) added by Paul Zimmermann
a(18)-a(19) found by David Baugh using a program by Xavier Gourdon and Andrey V. Kulsha, Oct 25 2007
a(20)-a(21) found by Andrey V. Kulsha using a program by Xavier Gourdon, Oct 02 2011
a(22) from Henri Lifchitz, Oct 14 2014
a(23) from David Baugh using Kim Walisch's primecount, May 16 2016
Comments