A007588 Stella octangula numbers: a(n) = n*(2*n^2 - 1).
0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, 5474, 6735, 8176, 9809, 11646, 13699, 15980, 18501, 21274, 24311, 27624, 31225, 35126, 39339, 43876, 48749, 53970, 59551, 65504, 71841, 78574, 85715, 93276, 101269, 109706, 118599, 127960
Offset: 0
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 51.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alexander Adamchuk and Vincenzo Librandi, Table of n, a(n) for n = 0..10000 [Alexander Adamchuk computed terms 0 - 169, Jun 02, 2008; Vincenzo Librandi computed the first 10000 terms, Aug 18 2011]
- A. Bremner, R. Høibakk and D. Lukkassen, Crossed ladders and Euler’s quartic, Annales Mathematicae et Informaticae, 36 (2009) pp. 29-41. See p. 33.
- John Elias, Nesting Cubes of the Surface Points of a Hexagonal Prism
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Amelia Carolina Sparavigna, Generalized Sum of Stella Octangula Numbers, Politecnico di Torino (Italy, 2021).
- Amelia Carolina Sparavigna, Cardano Formula and Some Figurate Numbers, Politecnico di Torino (Italy, 2021).
- Eric Weisstein's World of Mathematics, Stella Octangula Number
- Wikipedia, Stella octangula number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Aug 18 2011
-
Maple
A007588:=n->n*(2*n^2 - 1); seq(A007588(n), n=0..40); # Wesley Ivan Hurt, Mar 10 2014
-
Mathematica
Table[ n(2n^2-1), {n,0,169} ] (* Alexander Adamchuk, Jun 02 2008 *) LinearRecurrence[{4,-6,4,-1},{0,1,14,51},50] (* Harvey P. Dale, Sep 16 2011 *)
-
PARI
a(n)=n*(2*n^2-1)
-
Python
def A007588(n): return n*(2*n**2-1) # Chai Wah Wu, Feb 18 2022
Formula
G.f.: x*(1+10*x+x^2)/(1-x)^4.
a(n) = n*A056220(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Harvey P. Dale, Sep 16 2011
From Ilya Gutkovskiy, Jul 02 2016: (Start)
E.g.f.: x*(1 + 6*x + 2*x^2)*exp(x).
Dirichlet g.f.: 2*zeta(s-3) - zeta(s-1). (End)
Extensions
In the formula given in the 1995 Encyclopedia of Integer Sequences, the second 2 should be an exponent.
Comments