A007595 a(n) = C_n / 2 if n is even or ( C_n + C_((n-1)/2) ) / 2 if n is odd, where C = Catalan numbers (A000108).
1, 1, 3, 7, 22, 66, 217, 715, 2438, 8398, 29414, 104006, 371516, 1337220, 4847637, 17678835, 64823110, 238819350, 883634026, 3282060210, 12233141908, 45741281820, 171529836218, 644952073662, 2430973304732, 9183676536076, 34766775829452, 131873975875180
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..200
- Peter J. Cameron, Some treelike objects Quart. J. Math. Oxford Ser., Vol. 38, No. 2 (1987), pp. 155-183. Note that line 3 on p. 163 has a typo. - _N. J. A. Sloane_, Apr 18 2014
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seq., Vol. 3 (2000), Article 00.1.5.
- Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), Article 16.2.4.
- Andrew Gainer-Dewar, Pólya theory for species with an equivariant group action, arXiv preprint arXiv:1401.6202 [math.CO], 2014.
- Toufik Mansour, Counting occurrences of 132 in an even permutation, arXiv:math/0211205 [math.CO], 2002.
- Krishna Menon and Anurag Singh, Grassmannian permutations avoiding identity, arXiv:2212.13794 [math.CO], 2022.
Crossrefs
Programs
-
Maple
A007595 := n -> (1/2)*(Cat(n) + (`mod`(n,2)*Cat((n-1)/2))); Cat := n -> binomial(2*n,n)/(n+1);
-
Mathematica
Table[(Plus@@(EulerPhi[ # ]Binomial[2n/#, (n-1)/# ] &)/@Intersection[Divisors[2n], Divisors[n-1]])/(2n), {n, 2, 32}] (* or *) Table[If[EvenQ[n], CatalanNumber[n]/2, (CatalanNumber[n] + CatalanNumber[(n-1)/2])/2], {n, 24}] Table[(CatalanNumber[n] + 2^n Binomial[1/2, (n + 1)/2] Sin[Pi n/2])/2, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *) Table[If[EvenQ[n],CatalanNumber[n]/2,(CatalanNumber[n]+CatalanNumber[(n-1)/2])/2],{n,30}] (* Harvey P. Dale, Sep 06 2021 *)
-
PARI
catalan(n) = binomial(2*n, n)/(n+1); a(n) = if (n % 2, (catalan(n) + catalan((n-1)/2))/2, catalan(n)/2); \\ Michel Marcus, Jan 23 2016
Formula
G.f.: (2-2*x-sqrt(1-4*x)-sqrt(1-4*x^2))/x/4. - Vladeta Jovovic, Sep 26 2003
D-finite with recurrence: n*(n+1)*a(n) -6*n*(n-1)*a(n-1) +4*(2*n^2-10*n+9)*a(n-2) +8*(n^2+n-9)*a(n-3) -48*(n-3)*(n-4)*a(n-4) +32*(2*n-9)*(n-5)*a(n-5)=0. - R. J. Mathar, Jun 03 2014, adapted to offset Feb 20 2020
a(n) ~ 4^n /(2*sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Jul 19 2016
a(2n) = A000150(2n). - R. J. Mathar, Jul 19 2016
a(n) = (A000108(n) + 2^n * binomial(1/2, (n+1)/2) * sin(Pi*n/2))/2. - Vladimir Reshetnikov, Oct 03 2016
Sum_{n>=1} a(n)/4^n = (3-sqrt(3))/2 (A334843). - Amiram Eldar, Mar 20 2022
Extensions
Description corrected by Reiner Martin and Wouter Meeussen, Aug 04 2002
Comments