cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007660 a(n) = a(n-1)*a(n-2) + 1 with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 7, 22, 155, 3411, 528706, 1803416167, 953476947989903, 1719515742866809222961802, 1639518622529236077952144318816050685207, 2819178082162327154499022366029959843954512194276761760087463015
Offset: 0

Views

Author

Keywords

Comments

If we omit the first three terms of the sequence, a(n)/a(n-1) can be expressed as the continued fraction [a(n-2); a(n-1)]. - Eric Angelini, Feb 10 2005
This may be regarded as a multiplicative dual of the Fibonacci sequence A000045. Write Fibonacci's formula as F(0)=0, F(1)=1; F(n)=[F(n-1)+F(n-2)]*1 with n>1. Swap '+' and '*' and we have the present sequence! - B. Joshipura (bhushit(AT)yahoo.com), Aug 29 2007
a(n+1) divides a(2n+1), a(3n+1), a(4n+1), etc., this is because modulo a(n+1): a(1)=a(n+1)=0 and a(2)=a(n+2)=1 so the sequence repeats modulo a(n+1) with period n. - Isaac Kaufmann, Sep 04 2020

Examples

			b(10) / b(5) = 1803416167 / 7 = 257630881. - _Michael Somos_, Dec 29 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007660 n = a007660_list !! n
    a007660_list = 0 : 0 : map (+ 1)
                           (zipWith (*) a007660_list $ tail a007660_list)
    -- Reinhard Zumkeller, Jan 17 2015
    
  • Magma
    I:=[0,0]; [n le 2 select I[n] else Self(n-1)*Self(n-2)+1: n in [1..20]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n - 1]*a[n - 2] + 1; Table[ a[n], {n, 0, 15} ]
    RecurrenceTable[{a[0]==a[1]==0,a[n]==a[n-1]a[n-2]+1},a,{n,20}] (* Harvey P. Dale, Nov 12 2011 *)
  • Maxima
    a(n) := if (n=0 or n=1) then 0 else a(n-1)*a(n-2)+1 $
    makelist(a(n),n,0,18); /* Emanuele Munarini, Mar 24 2017 */

Formula

a(n) is asymptotic to c^(phi^n) where phi = (1 + sqrt(5))/2 and c = A258113 = 1.1130579759029319... - Benoit Cloitre, Sep 26 2003
b(n) = a(n+1) is a divisibility sequence. - Michael Somos, Dec 29 2012