A007742 a(n) = n*(4*n+1).
0, 5, 18, 39, 68, 105, 150, 203, 264, 333, 410, 495, 588, 689, 798, 915, 1040, 1173, 1314, 1463, 1620, 1785, 1958, 2139, 2328, 2525, 2730, 2943, 3164, 3393, 3630, 3875, 4128, 4389, 4658, 4935, 5220, 5513, 5814, 6123, 6440, 6765, 7098, 7439, 7788, 8145
Offset: 0
Examples
Part of the spiral: . 64--65--66--67--68 | 63 36--37--38--39--40--41--42 | | | 62 35 16--17--18--19--20 43 | | | | | 61 34 15 4---5---6 21 44 | | | | | | | 60 33 14 3 0 7 22 45 | | | | | | | | 59 32 13 2---1 8 23 46 | | | | | | 58 31 12--11--10---9 24 47 | | | | 57 30--29--28--27--26--25 48 | | 56--55--54--53--52--51--50--49
References
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Emilio Apricena, A version of the Ulam spiral
- Robert FERREOL, Illustration by pentagons
- Kival Ngaokrajang, Illustration of 4 points circle center spiral
- Leo Tavares, Illustration: Triangular Layers
- G. Thimm, Emails to N. J. A. Sloane, Sep. 1994
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, A002943, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. index to sequences with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A081266.
Programs
-
Magma
I:=[0, 5, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{0,5,18},50] (* Vincenzo Librandi, Jan 29 2012 *) Table[n(4n+1),{n,0,50}] (* Harvey P. Dale, Aug 10 2017 *)
-
PARI
a(n)=4*n^2+n
Formula
G.f.: x*(5+3*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n + a(n-1) - 3. - Vincenzo Librandi, Nov 21 2010
Sum_{n>=1} 1/a(n) = Sum_{k>=0} (-1)^k*zeta(2+k)/4^(k+1) = 0.349762131... . - R. J. Mathar, Jul 10 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=18. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+4). - Philippe Deléham, Mar 26 2013
E.g.f.: (4*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi/2 - 3*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(2) + log(2) + sqrt(2)*log(1 + sqrt(2)) - 4. (End)
Comments