cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007758 a(n) = 2^n*n^2.

Original entry on oeis.org

0, 2, 16, 72, 256, 800, 2304, 6272, 16384, 41472, 102400, 247808, 589824, 1384448, 3211264, 7372800, 16777216, 37879808, 84934656, 189267968, 419430400, 924844032, 2030043136, 4437573632, 9663676416, 20971520000, 45365592064, 97844723712, 210453397504
Offset: 0

Views

Author

David J. Snook (ua532(AT)freenet.victoria.bc.ca)

Keywords

Comments

"The traveling salesman problem can be solved in time O(n^2 2^n) (where n is the size of the network to visit)." [Wikipedia] - Jonathan Vos Post, Apr 10 2006
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017

References

  • Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.

Crossrefs

Programs

  • Magma
    [2^n*n^2: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
    
  • Maple
    seq(seq(k^n*n^k, k=2..2), n=0..25); and seq(2^n*n^2, n=0..25); # Zerinvary Lajos, Jul 01 2007
  • Mathematica
    Table[n^2 * 2^n, {n, 0, 31}] (* Alonso del Arte, Oct 22 2014 *)
    LinearRecurrence[{6,-12,8},{0,2,16},30] (* Harvey P. Dale, Jan 27 2017 *)
  • PARI
    a(n)=n^2<Charles R Greathouse IV, Oct 28 2014

Formula

From Henry Bottomley, Jun 13 2001: (Start)
a(n) = 2*A014477(n-1).
G.f.: 2*x(1+2*x)/(1-2*x)^3.
Binomial transform of A002939.
Inverse binomial transform of A062189. (End)
Sum_{n>=1} 1/a(n) = Pi^2/12 - (1/2)*(log(2))^2. - Benoit Cloitre, Apr 05 2002
a(n) = Sum_{k=1..n} k*2^k. - Zerinvary Lajos, Oct 09 2006
E.g.f.: exp(2*x)*(2*x + 4*x^2). - Geoffrey Critzer, Aug 28 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = -Li_2(-1/2) (A355234). - Amiram Eldar, Jun 28 2022