cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A128796 a(n) = n*(n-1)*2^n.

Original entry on oeis.org

0, 0, 8, 48, 192, 640, 1920, 5376, 14336, 36864, 92160, 225280, 540672, 1277952, 2981888, 6881280, 15728640, 35651584, 80216064, 179306496, 398458880, 880803840, 1937768448, 4244635648, 9261023232, 20132659200, 43620761600, 94220845056, 202937204736, 435939180544
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^2-n)*2^n: n in [0..30]]; // Vincenzo Librandi, Feb 10 2013
    
  • Mathematica
    CoefficientList[Series[8 x^2/(1 - 2 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2013 *)
  • PARI
    a(n)=n*(n-1)<Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: 8*x^2/(1 - 2*x)^3. - Vincenzo Librandi, Feb 10 2013
a(n) = 8*A001788(n-1). - R. J. Mathar, Apr 26 2015
From Amiram Eldar, Jul 11 2020: (Start)
Sum_{n>=2} 1/a(n) = (1 - log(2))/2.
Sum_{n>=2} (-1)^n/a(n) = (3*log(3/2) - 1)/2. (End)
E.g.f.: 4*exp(2*x)*x^2. - Stefano Spezia, Sep 02 2024

A014477 Expansion of (1 + 2*x)/(1 - 2*x)^3.

Original entry on oeis.org

1, 8, 36, 128, 400, 1152, 3136, 8192, 20736, 51200, 123904, 294912, 692224, 1605632, 3686400, 8388608, 18939904, 42467328, 94633984, 209715200, 462422016, 1015021568, 2218786816, 4831838208, 10485760000, 22682796032, 48922361856, 105226698752, 225754218496
Offset: 0

Views

Author

Keywords

Comments

The sequence 0,1,8,... has a(n) = n^2*2^(n-1) and is the binomial transform of the hexagonal numbers A000384 (with leading 0). - Paul Barry, Jun 09 2003
As 0,1,8,... this is n^2*2^(n-1), the binomial transform of the hexagonal numbers A000384 (include the leading 0). Partial sums are A036826. - Paul Barry, Jun 10 2003
Sequence gives total value of all possible sums of distinct odd integers with maximum term less than 2n+1. E.g., for a(3) we can have the sums 1, 3, 5, 1+3, 1+5, 3+5, 1+3+5, which sum to 1+3+5+4+6+8+9 = 36. - Jon Perry, Feb 06 2004
Number of edges on a partially truncated (n+1)-cube (column 2 of A271316).

Crossrefs

Programs

Formula

O.g.f.: (1 + 2*x)/(1 - 2*x)^3 (see the name).
a(n) = (n+1)^2*2^n = A007758(n+1)/2. - Henry Bottomley, Jun 13 2001
The binomial transform of 0, 1, 8, ... is A077616. - Paul Barry, Jul 24 2003
a(1)=1, a(n) = 2a(n-1) + (2n-1)*2^(n-1). - Jon Perry, Feb 06 2004
a(n) = sum of (n+1)-th row of the triangle in A118416. - Reinhard Zumkeller, Apr 27 2006
a(n) = Sum_{j=0..n} binomial(n,j)*n*j. - Zerinvary Lajos, Oct 19 2006
E.g.f.: exp(2*x)*(1 + 6*x + 8*x^2/2!). - Wolfdieter Lang, Jul 29 2017
Sum_{n>=0} 1/a(n) = Pi^2/6 - log(2)^2. - Daniel Suteu, Oct 31 2017
Sum_{n>=0} (-1)^n/a(n) = -2 * Li_2(-1/2) = -2 * A355234. - Amiram Eldar, Oct 01 2022

A098803 a(n) = n^7 * 7^n.

Original entry on oeis.org

0, 7, 6272, 750141, 39337984, 1313046875, 32934190464, 678223072849, 12089663946752, 193010051319183, 2824752490000000, 38532504363714053, 495958345459089408, 6079641716636816419, 71493870602660352896
Offset: 0

Views

Author

Parthasarathy Nambi, Oct 05 2004

Keywords

Examples

			a(1) = 1^7 * 7^1 = 7.
a(2) = 2^7 * 7^2 = 6272.
		

Crossrefs

Programs

Formula

G.f.: 7*x*(117649*x^6 +2016840*x^5 +2859591*x^4 +828688*x^3 +58359*x^2 +840*x +1) / (7*x -1)^8. - Colin Barker, Apr 30 2013

Extensions

More terms from Stefan Steinerberger, Mar 06 2006
Offset changed from 1 to 0 by Vincenzo Librandi, Oct 27 2011

A355234 Decimal expansion of Li_2(-1/2), the dilogarithm of (-1/2) (negated).

Original entry on oeis.org

4, 4, 8, 4, 1, 4, 2, 0, 6, 9, 2, 3, 6, 4, 6, 2, 0, 2, 4, 4, 3, 0, 6, 4, 4, 0, 5, 9, 1, 5, 7, 7, 4, 3, 2, 0, 8, 3, 4, 2, 6, 9, 9, 4, 1, 3, 4, 9, 1, 9, 9, 1, 2, 8, 5, 0, 1, 7, 4, 6, 3, 7, 1, 3, 1, 6, 8, 2, 4, 3, 7, 2, 2, 5, 5, 7, 2, 0, 3, 1, 2, 3, 8, 9, 8, 6, 5, 1, 6, 5, 1, 8, 6, 6, 5, 3, 3, 1, 0, 6, 6, 9, 0, 2, 8
Offset: 0

Views

Author

Amiram Eldar, Jun 25 2022

Keywords

Examples

			-0.44841420692364620244306440591577432083426994134919...
		

Crossrefs

Other values of Li_2: A072691, A076788, A152115, A242599, A242600.

Programs

  • Mathematica
    RealDigits[PolyLog[2, -1/2], 10, 100][[1]]
  • PARI
    -dilog(-1/2) \\ Michel Marcus, Jun 25 2022

Formula

From Shamos (2011):
Equals -Li_2(1/3) - log(3/2)^2/2.
Equals Li_2(2/3) + log(3)^2/2 - log(2)^2/2 - Pi^2/6.
Equals Li_2(1/4)/2 + log(2)^2/2 - Pi^2/12.
Equals -Sum_{k>=1} (-1)^(k+1)/(2^k*k^2) = -Sum_{k>=1} (-1)^(k+1)/A007758(k).
Equals -Sum_{k>=1} H(k)/(k*3^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
Equals -Integral_{x=0..1} log(x)^2/(x+2)^2 dx.
Equals -Integral_{x>=1} log(x)^2/(2*x+1)^2 dx.
Equals Integral_{x=0..1} log(x)/(x+2) dx.
Equals -Integral_{x>=0} log(1 + exp(-x)/2) dx.

A062275 Array A(n, k) = n^k * k^n, n, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 16, 3, 0, 0, 4, 72, 72, 4, 0, 0, 5, 256, 729, 256, 5, 0, 0, 6, 800, 5184, 5184, 800, 6, 0, 0, 7, 2304, 30375, 65536, 30375, 2304, 7, 0, 0, 8, 6272, 157464, 640000, 640000, 157464, 6272, 8, 0, 0, 9, 16384, 750141, 5308416, 9765625
Offset: 0

Views

Author

Henry Bottomley, Jul 02 2001

Keywords

Comments

Here 0^0 is defined to be 1. - Wolfdieter Lang, May 27 2018

Examples

			A(3, 2) = 3^2 * 2^3 = 9*8 = 72.
The array A(n, k) begins:
n\k 0 1   2   3    4     5      6      7       8        9       10 ...
0:  1 0   0   0    0     0      0      0       0        0        0 ...
1:  0 1   2   3    4     5      6      7       8        9       10 ...
2:  0 2  16  72  256   800   2304   6272   16384    41472   102400 ...
3:  0 3  72 729 5184 30375 157464 750141 3359232 14348907 59049000 ...
...
The triangle T(n, k) begins:
n\k  0  1    2      3      4      5      6    7  8  9 ...
0:   1
1:   0  0
2:   0  1    0
3:   0  2    2      0
4:   0  3   16      3      0
5:   0  4   72     72      4      0
6:   0  5  256    729    256      5      0
7:   0  6  800   5184   5184    800      6    0
8:   0  7 2304  30375  65536  30375   2304    7  0
9:   0  8 6272 157464 640000 640000 157464 6272  8  0
... - _Wolfdieter Lang_, May 22 2018
		

Crossrefs

Columns and rows of A, or columns and diagonals of T, include A000007, A001477, A007758, A062074, A062075 etc. Diagonals of A include A062206, A051443, A051490. Sum of rows of T are A062817(n), for n >= 1

Programs

  • Mathematica
    {{1}}~Join~Table[(#^k k^#) &[n - k], {n, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 24 2018 *)
  • PARI
    t1(n)=n-binomial(round(sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    a(n)=t1(n)^t2(n)*t2(n)^t1(n) \\ Eric Chen, Jun 09 2018

Formula

From Wolfdieter Lang, May 22 2018: (Start)
As a sequence: a(n) = A003992(n)*A004248(n).
As a triangle: T(n, k) = (n-k)^k * k^(n-k), for n >= 1 and k = 1..n. (End)

A128782 a(n) = n^2*4^n.

Original entry on oeis.org

0, 4, 64, 576, 4096, 25600, 147456, 802816, 4194304, 21233664, 104857600, 507510784, 2415919104, 11341398016, 52613349376, 241591910400, 1099511627776, 4964982194176, 22265110462464, 99230924406784, 439804651110400, 1939538511396864, 8514618045497344, 37225065669984256
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Sep 20 2011: (Start)
G.f.: 4*x*(1 + 4*x)/(1 - 4*x)^3 .
a(n) = 4*A086952(n). (End)
E.g.f.: 4*exp(4*x)*x*(1 + 4*x). - Stefano Spezia, Oct 09 2022

A128789 n^3*2^n.

Original entry on oeis.org

0, 2, 32, 216, 1024, 4000, 13824, 43904, 131072, 373248, 1024000, 2725888, 7077888, 17997824, 44957696, 110592000, 268435456, 643956736, 1528823808, 3596091392, 8388608000, 19421724672, 44660948992, 102064193536, 231928233984
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

  • Magma
    [n^3*2^n: n in [0..30]]; // Vincenzo Librandi, Feb 07 2013
  • Mathematica
    CoefficientList[Series[2 x (1 + 8 x + 4 x^2)/(1 - 2 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 07 2013 *)
    Table[n^3 2^n,{n,0,30}] (* or *) LinearRecurrence[{8,-24,32,-16},{0,2,32,216},30] (* Harvey P. Dale, Jun 14 2013 *)

Formula

G.f.: 2*x*(1 + 8*x + 4*x^2)/(1 - 2*x)^4. - Vincenzo Librandi, Feb 07 2013
a(0)=0, a(1)=2, a(2)=32, a(3)=216, a(n)=8*a(n-1)-24*a(n-2)+ 32*a(n-3)- 16*a(n-4). - Harvey P. Dale, Jun 14 2013
E.g.f.: exp(2*x)*(2*x + 12*x^2 + 8*x^3). - Geoffrey Critzer, Aug 28 2013
Sum_{n>=1} 1/a(n) = (log(2))^3/6 - Pi^2*log(2)/12 + 7*Zeta(3)/8 = 0.53721319360804020094... . - Vaclav Kotesovec, Feb 15 2015

A146748 Numbers of the form n^k * k^n, where n,k > 1.

Original entry on oeis.org

16, 72, 256, 729, 800, 2304, 5184, 6272, 16384, 30375, 41472, 65536, 102400, 157464, 247808, 589824, 640000, 750141, 1384448, 3211264, 3359232, 5308416, 7372800, 9765625, 14348907, 16777216, 37879808, 39337984, 59049000, 84934656
Offset: 1

Views

Author

Howard Berman (howard_berman(AT)hotmail.com), Nov 01 2008

Keywords

Examples

			2^2 * 2^2 = 16,
2^3 * 3^2 = 72.
		

Crossrefs

Programs

  • Maple
    N:= 10^20: # for terms <= N
    S:= {}:
    for n from 2 to ilog2(N) do
      for k from n do
        v:= n^k * k^n;
        if v > N then break fi;
        S:= S union {v};
    od od:
    sort(convert(S,list)); # Robert Israel, Oct 31 2023

A198404 8^n*n^8.

Original entry on oeis.org

0, 8, 16384, 3359232, 268435456, 12800000000, 440301256704, 12089663946752, 281474976710656, 5777633090469888, 107374182400000000, 1841328767004311552, 29548117155177824256, 448452706436800053248, 6490588908866265677824, 90173697372979200000000
Offset: 0

Views

Author

Vincenzo Librandi, Oct 27 2011

Keywords

Crossrefs

Programs

  • Magma
    [8^n*n^8: n in [0..20]]
    
  • Mathematica
    Table[8^n n^8,{n,0,20}] (* or *) LinearRecurrence[{72,-2304,43008,-516096,4128768,-22020096,75497472,-150994944,134217728},{0,8,16384,3359232,268435456,12800000000,440301256704,12089663946752,281474976710656},20] (* Harvey P. Dale, Apr 28 2018 *)
  • PARI
    a(n)=8^n*n^8 \\ Charles R Greathouse IV, Jul 06 2017

Formula

G.f.: -8*x*(8*x +1)*(262144*x^6 +8060928*x^5 +16576512*x^4 +5924864*x^3 +259008*x^2 +1968*x +1) / (8*x -1)^9. - Colin Barker, Apr 30 2013

A198478 a(n) = 9^n * n^9.

Original entry on oeis.org

0, 9, 41472, 14348907, 1719926784, 115330078125, 5355700839936, 193010051319183, 5777633090469888, 150094635296999121, 3486784401000000000, 73994897046174912819, 1457274373159131021312, 26955214582765006137717
Offset: 0

Views

Author

Vincenzo Librandi, Oct 27 2011

Keywords

Crossrefs

Programs

  • Magma
    [9^n*n^9: n in [0..20]]
    
  • Mathematica
    Table[9^n*n^9, {n, 0, 20}] (* G. C. Greubel, May 17 2022 *)
  • SageMath
    [9^n*n^9 for n in (0..20)] # G. C. Greubel, May 17 2022

Formula

G.f.: 9*x*(1 + 4518*x + 1183248*x^2 + 64322586*x^3 + 1024762590*x^4 + 5210129466*x^5 + 7763290128*x^6 + 2401050438*x^7 + 43046721*x^8)/(1 - 9*x)^10. - Colin Barker, Apr 30 2013
a(n) = A001019(n)*A001017(n). - Michel Marcus, May 18 2022
Showing 1-10 of 49 results. Next