cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A064298 Square array read by antidiagonals of self-avoiding rook paths joining opposite corners of n X k board.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 38, 38, 16, 1, 1, 32, 125, 184, 125, 32, 1, 1, 64, 414, 976, 976, 414, 64, 1, 1, 128, 1369, 5382, 8512, 5382, 1369, 128, 1, 1, 256, 4522, 29739, 79384, 79384, 29739, 4522, 256, 1, 1, 512, 14934, 163496, 752061, 1262816, 752061, 163496, 14934, 512, 1
Offset: 1

Views

Author

Henry Bottomley, Sep 05 2001

Keywords

Examples

			The start of the sequence as table:
* 1  1    1     1      1        1         1 ...
* 1  2    4     8     16       32        64 ...
* 1  4   12    38    125      414      1369 ...
* 1  8   38   184    976     5382     29739 ...
* 1 16  125   976   8512    79384    752061 ...
* 1 32  414  5382  79384  1262816  20562673 ...
* 1 64 1369 29739 752061 20562673 575780564 ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

Crossrefs

A064297 together with its transpose.
Rows and columns include A000012, A000079, A006192, A007786, A007787, A145403, A333812.
Main diagonal is A007764.
Cf. A271465.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A064298(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal)
        return paths.len()
    print([A064298(j + 1, i - j + 1) for i in range(11) for j in range(i + 1)])  # Seiichi Manyama, Apr 06 2020

A007787 Number of nonintersecting rook paths joining opposite corners of 5 X n board.

Original entry on oeis.org

1, 16, 125, 976, 8512, 79384, 752061, 7110272, 67005561, 630588698, 5933085772, 55827318685, 525343024814, 4943673540576, 46521924780255, 437788749723725, 4119750109152730, 38768318191017931, 364823700357765771, 3433121323699285343
Offset: 1

Views

Author

Heiner Marxen

Keywords

References

  • Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file (Science Section).

Crossrefs

Row 5 of A064298.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A064298(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal)
        return paths.len()
    def A007787(n):
        return A064298(n, 5)
    print([A007787(n) for n in range(1, 20)])  # Seiichi Manyama, Apr 06 2020

Formula

Faase gives a 27-term linear recurrence on his web page:
a(1) = 1,
a(2) = 16,
a(3) = 125,
a(4) = 976,
a(5) = 8512,
a(6) = 79384,
a(7) = 752061,
a(8) = 7110272,
a(9) = 67005561,
a(10) = 630588698,
a(11) = 5933085772,
a(12) = 55827318685,
a(13) = 525343024814,
a(14) = 4943673540576,
a(15) = 46521924780255,
a(16) = 437788749723725,
a(17) = 4119750109152730,
a(18) = 38768318191017931,
a(19) = 364823700357765771,
a(20) = 3433121323699285343,
a(21) = 32306898830469680384,
a(22) = 304019468350280601960,
a(23) = 2860931888452842047170,
a(24) = 26922391858409506569346,
a(25) = 253349332040459400463497,
a(26) = 2384107785665647075602841,
a(27) = 22435306570786253414376286 and
a(n) = 30a(n-1) - 383a(n-2) + 2772a(n-3) - 12378a(n-4) + 33254a(n-5)
- 40395a(n-6) - 44448a(n-7) + 239776a(n-8) - 274256a(n-9) - 180404a(n-10)
+ 678758a(n-11) - 301650a(n-12) - 542266a(n-13) + 492472a(n-14) + 184306a(n-15)
- 225284a(n-16) - 102314a(n-17) + 25534a(n-18) + 97396a(n-19) + 10392a(n-20)
- 40292a(n-21) - 13218a(n-22) + 5328a(n-23) + 5376a(n-24) + 1822a(n-25)
+ 319a(n-26) + 24a(n-27).
Asymptotics: a(n) ~ 0.115762181699251 * 9.4103574958247159212^n [From Vaclav Kotesovec, Aug 31 2012]

Extensions

More terms from Ralf Stephan, Mar 29 2004
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009

A006192 Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of 3 X n board.

Original entry on oeis.org

1, 4, 12, 38, 125, 414, 1369, 4522, 14934, 49322, 162899, 538020, 1776961, 5868904, 19383672, 64019918, 211443425, 698350194, 2306494009, 7617832222, 25159990674, 83097804242, 274453403399, 906458014440
Offset: 1

Views

Author

Keywords

References

  • H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.
  • Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file. (Science Section).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,4,12,38]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)+2*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Oct 06 2011
  • Mathematica
    LinearRecurrence[{4,-3,2,1},{1,4,12,38},40] (* Harvey P. Dale, Oct 05 2011 *)

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3) + a(n-4) with a(0) = 0, a(1) = 1, a(2) = 4 and a(3) = 12. - Henry Bottomley, Sep 05 2001
G.f.: x*(1-x^2)/(1 - 4*x + 3*x^2 - 2*x^3 - x^4). - Emeric Deutsch, Dec 22 2004

A181395 Summed lengths of nonintersecting rook paths on a 4 X n board.

Original entry on oeis.org

3, 40, 284, 1912, 13132, 88608, 577727, 3659416, 22719964, 139088248, 842307548, 5055782456, 30119691570, 178296516264, 1049685801023, 6150604755800, 35890214413836, 208663068856540, 1209212316951436, 6987073893141896, 40267076160162015, 231512818498197668
Offset: 1

Views

Author

David Scambler, Oct 17 2010

Keywords

Comments

Paths are self-avoiding from one corner to the diagonally opposite corner.

Crossrefs

Row 4 of A181399.
Enumeration of these paths is A007786, related sequences A181394, A181396, A181397, A181398.

Formula

Conjectured g.f.: x*(1 - x)*(3 - 29*x + 51*x^2 + 595*x^3 - 3879*x^4 + 9553*x^5 - 8366*x^6 - 8026*x^7 + 22931*x^8 - 13117*x^9 - 5593*x^10 + 7955*x^11 - 6118*x^12 + 6842*x^13 + 1884*x^14 - 6824*x^15 + 519*x^16 + 1991*x^17 - 206*x^18 - 230*x^19 + 13*x^20 + 9*x^21)/((1 - 8*x + 15*x^2 - 5*x^3 - 9*x^4 + 2*x^5 + x^6)^2*(1 - 4*x + 7*x^2 - 3*x^3 - 7*x^4 + 2*x^5 + x^6)^2). - Andrew Howroyd, Jan 06 2020

Extensions

a(10)-a(13) from Alois P. Heinz, Dec 10 2011
Terms a(14) and beyond from Andrew Howroyd, Jan 06 2020

A064297 Triangle of self-avoiding rook paths joining opposite corners of n X k board.

Original entry on oeis.org

1, 1, 2, 1, 4, 12, 1, 8, 38, 184, 1, 16, 125, 976, 8512, 1, 32, 414, 5382, 79384, 1262816, 1, 64, 1369, 29739, 752061, 20562673, 575780564, 1, 128, 4522, 163496, 7110272, 336067810, 16230458696, 789360053252, 1, 256, 14934, 896476, 67005561
Offset: 1

Views

Author

Henry Bottomley, Sep 05 2001

Keywords

Examples

			Triangle starts
1,
1, 2,
1, 4, 12,
1, 8, 38, 184,
1, 16, 125, 976, 8512,
1, 32, 414, 5382, 79384, 1262816,
1, 64, 1369, 29739, 752061, 20562673, 575780564,
1, 128, 4522, 163496, 7110272, 336067810, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

Crossrefs

Half of A064298.
Row/column combinations include A000012, A000079, A006192, A007786, A007787, A145403.
Right hand column is A007764.
Cf. A271465.

A244088 Decimal expansion of 1/2+2/sqrt(13), a constant related to the asymptotic evaluation of the number of self-avoiding rook paths joining opposite corners on a 3 X n chessboard.

Original entry on oeis.org

1, 0, 5, 4, 7, 0, 0, 1, 9, 6, 2, 2, 5, 2, 2, 9, 1, 2, 2, 0, 1, 8, 3, 4, 1, 7, 3, 3, 4, 5, 6, 9, 9, 9, 3, 7, 6, 3, 4, 6, 3, 5, 3, 3, 1, 9, 0, 5, 3, 1, 1, 4, 8, 0, 1, 9, 5, 5, 4, 5, 4, 3, 1, 6, 3, 4, 2, 6, 4, 1, 0, 6, 8, 9, 6, 8, 1, 5, 5, 4, 5, 3, 1, 0, 8, 4, 0, 2, 9, 3, 5, 6, 9, 5, 1, 5, 2, 4, 1, 8
Offset: 1

Views

Author

Jean-François Alcover, Jun 20 2014

Keywords

Examples

			1.054700196225229122018341733456999376346353319...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.10.2 Rook paths on a chessboard, p. 334.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2 + 2/Sqrt[13], 10, 100] // First

Formula

Asymptotic number of paths = p(k) ~ (1/2+2/sqrt(13)) * sqrt((3+sqrt(13))/2)^(2k), where k = n-1.

A244089 Decimal expansion of sqrt((3+sqrt(13))/2), a constant related to the asymptotic evaluation of the number of self-avoiding rook paths joining opposite corners on a 3 X n chessboard.

Original entry on oeis.org

1, 8, 1, 7, 3, 5, 4, 0, 2, 1, 0, 2, 3, 9, 7, 0, 6, 2, 0, 0, 7, 5, 1, 9, 4, 4, 8, 6, 0, 3, 5, 8, 2, 1, 9, 2, 6, 4, 6, 9, 4, 0, 3, 6, 4, 3, 1, 2, 7, 1, 3, 6, 1, 1, 2, 0, 6, 3, 3, 0, 7, 7, 0, 5, 8, 2, 7, 9, 8, 9, 9, 4, 3, 8, 6, 8, 3, 6, 5, 6, 9, 3, 6, 7, 8, 1, 9, 2, 0, 1, 7, 8, 1, 0, 0, 6, 2, 6, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, Jun 20 2014

Keywords

Examples

			1.8173540210239706200751944860358219264694...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.10.2 Rook paths on a chessboard, p. 334.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[(3 + Sqrt[13])/2], 10, 100] // First

Formula

Asymptotic number of paths = p(k) ~ (1/2+2/sqrt(13)) * sqrt((3+sqrt(13))/2)^(2k), where k = n-1.
Showing 1-7 of 7 results.