cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007764 Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of an n X n grid.

Original entry on oeis.org

1, 2, 12, 184, 8512, 1262816, 575780564, 789360053252, 3266598486981642, 41044208702632496804, 1568758030464750013214100, 182413291514248049241470885236, 64528039343270018963357185158482118, 69450664761521361664274701548907358996488
Offset: 1

Views

Author

Keywords

Comments

The length of the path varies.

Examples

			Suppose we start at (1,1) and end at (n,n). Let U, D, L, R denote steps that are up, down, left, right.
a(2) = 2: UR or RU.
a(3) = 12: UURR, UURDRU, UURDDRUU, URUR, URRU, URDRUU and their reflections in the x=y line.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 5.10, pp. 331-338.
  • Guttmann A J and Jensen I 2022 Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices Journal of Physics A: Mathematical and Theoretical 55 012345, (33pp) ; arXiv:2208.06744, Aug 2022.
  • D. E. Knuth, 'Things A Computer Scientist Rarely Talks About,' CSLI Publications, Stanford, CA, 2001, pages 27-28.
  • D. E. Knuth, The Art of Computer Programming, Section 7.1.4.
  • Shin-ichi Minato, The power of enumeration - BDD/ZDD-based algorithms for tackling combinatorial explosion, Chapter 3 of Applications of Zero-Suppressed Decision Diagrams, ed. T. Satsoa and J. T. Butler, Morgan & Claypool Publishers, 2014
  • Shin-ichi Minato, Counting by ZDD, Encyclopedia of Algorithms, 2014, pp. 1-6.
  • Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file. (Science Section).

Crossrefs

Main diagonal of A064298.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A007764(n):
        if n == 1: return 1
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n * n
        paths = GraphSet.paths(start, goal)
        return paths.len()
    print([A007764(n) for n in range(1, 10)])  # Seiichi Manyama, Mar 21 2020

Extensions

Computed to n=12 by John Van Rosendale in 1981
Extended to n=13 by Don Knuth, Dec 07 1995
Extended to n=20 by Mireille Bousquet-Mélou, A. J. Guttmann and I. Jensen
Extended to n=22 using ZDD technique based on Knuth's The Art of Computer Programming (exercise 225 in 7.1.4) by H. Iwashita, J. Kawahara, and S. Minato, Sep 18 2012
Extended to n=25 using state space compression (with rank/unrank) and dynamic programming (based in I. Jensen) by Ruben Grønning Spaans, Feb 22 2013
Extended to n=26 by Hiroaki Iwashita, Apr 11 2013
Extended to n=27 by Hiroaki Iwashita, Nov 18 2013

A064298 Square array read by antidiagonals of self-avoiding rook paths joining opposite corners of n X k board.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 38, 38, 16, 1, 1, 32, 125, 184, 125, 32, 1, 1, 64, 414, 976, 976, 414, 64, 1, 1, 128, 1369, 5382, 8512, 5382, 1369, 128, 1, 1, 256, 4522, 29739, 79384, 79384, 29739, 4522, 256, 1, 1, 512, 14934, 163496, 752061, 1262816, 752061, 163496, 14934, 512, 1
Offset: 1

Views

Author

Henry Bottomley, Sep 05 2001

Keywords

Examples

			The start of the sequence as table:
* 1  1    1     1      1        1         1 ...
* 1  2    4     8     16       32        64 ...
* 1  4   12    38    125      414      1369 ...
* 1  8   38   184    976     5382     29739 ...
* 1 16  125   976   8512    79384    752061 ...
* 1 32  414  5382  79384  1262816  20562673 ...
* 1 64 1369 29739 752061 20562673 575780564 ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

Crossrefs

A064297 together with its transpose.
Rows and columns include A000012, A000079, A006192, A007786, A007787, A145403, A333812.
Main diagonal is A007764.
Cf. A271465.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A064298(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal)
        return paths.len()
    print([A064298(j + 1, i - j + 1) for i in range(11) for j in range(i + 1)])  # Seiichi Manyama, Apr 06 2020

A006192 Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of 3 X n board.

Original entry on oeis.org

1, 4, 12, 38, 125, 414, 1369, 4522, 14934, 49322, 162899, 538020, 1776961, 5868904, 19383672, 64019918, 211443425, 698350194, 2306494009, 7617832222, 25159990674, 83097804242, 274453403399, 906458014440
Offset: 1

Views

Author

Keywords

References

  • H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.
  • Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file. (Science Section).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,4,12,38]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)+2*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Oct 06 2011
  • Mathematica
    LinearRecurrence[{4,-3,2,1},{1,4,12,38},40] (* Harvey P. Dale, Oct 05 2011 *)

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3) + a(n-4) with a(0) = 0, a(1) = 1, a(2) = 4 and a(3) = 12. - Henry Bottomley, Sep 05 2001
G.f.: x*(1-x^2)/(1 - 4*x + 3*x^2 - 2*x^3 - x^4). - Emeric Deutsch, Dec 22 2004

A351108 Triangle read by rows: T(m,n) is the number of simple paths for a Racetrack car (using von Neumann neighborhood) with initial velocity zero, going from one corner to the diagonally opposite corner on an m X n grid, 1 <= n <= m.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 2, 2, 3, 8, 3, 3, 7, 12, 40, 5, 7, 13, 26, 160, 1380, 9, 13, 28, 61, 918, 12940, 211164, 14, 27, 61, 161, 7260, 142453, 4997155, 205331148
Offset: 1

Views

Author

Pontus von Brömssen, Feb 01 2022

Keywords

Examples

			Triangle begins:
  m\n|  1  2  3   4    5      6       7         8
  ---+-------------------------------------------
  1  |  1
  2  |  1  0
  3  |  1  1  2
  4  |  2  2  3   8
  5  |  3  3  7  12   40
  6  |  5  7 13  26  160   1380
  7  |  9 13 28  61  918  12940  211164
  8  | 14 27 61 161 7260 142453 4997155 205331148
		

Crossrefs

Cf. A064297, A291896 (column n=1), A351042, A351106, A351109 (main diagonal).
Showing 1-4 of 4 results.