A007830 a(n) = (n+3)^n.
1, 4, 25, 216, 2401, 32768, 531441, 10000000, 214358881, 5159780352, 137858491849, 4049565169664, 129746337890625, 4503599627370496, 168377826559400929, 6746640616477458432, 288441413567621167681, 13107200000000000000000, 630880792396715529789561
Offset: 0
References
- M. Shapiro, B. Shapiro and A. Vainshtein - Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, Amer. Math. Soc. Transl., Vol. 180 (1997), pp. 219-227.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.27.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013-2015.
- P. J. Cameron, Two-graphs and Trees, Discrete Math. 127 (1994) 63-74.
- P. J. Cameron, Counting two-graphs related to trees, Elec. J. Combin., Vol. 2, #R4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
- Oleg Pikhurko, Generating Edge-Labeled Trees, American Math. Monthly, 112 (2005) 919-921.
- M. Shapiro, B. Shapiro and A. Vainshtein, Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, 1996.
- Index entries for sequences related to trees
Crossrefs
Programs
-
Magma
[(n+3)^n: n in [0..20]]; // G. C. Greubel, Mar 06 2020
-
Maple
A007830:=n->(n+3)^n; seq(A007830(n), n=0..20); T := -LambertW(-x): ser := series(exp(3*T)/(1-T), x, 20): seq(n!*coeff(ser, x, n), n = 0..18); # Peter Luschny, Jan 20 2023
-
Mathematica
Table[(n+3)^n, {n, 0, 18}]
-
PARI
a(n)=(n+3)^n \\ Charles R Greathouse IV, Feb 06 2017
-
Sage
[(n+3)^n for n in (0..20)] # G. C. Greubel, Mar 06 2020
Formula
E.g.f. for b(n) = a(n-3): T(x) - (3/4)*T^2(x) + (1/6)*T^3(x), where T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
E.g.f.: -LambertW(-x)^3/(x^3 * (1+LambertW(-x))). - Vladeta Jovovic, Nov 07 2003
With offset 1: E.g.f.: exp(T(x))^2/2 where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, May 10 2013
E.g.f.: (1/2)*d/dx (LambertW(-x)/(-x))^2. - Wolfdieter Lang, Oct 25 2022
Extensions
More terms from Wesley Ivan Hurt, May 05 2014
Comments