cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A360736 Number of prime divisors of A007942(n) = decimal concatenation of sequence (n, n-1, ..., 2, 1, 2, ..., n-1, n) counted with multiplicity.

Original entry on oeis.org

0, 3, 3, 2, 5, 8, 3, 4, 3, 3, 3, 5, 1, 4, 6, 3, 2, 3, 4, 11, 4, 8, 2, 4, 5, 6, 5, 9, 5, 6, 6, 4, 5, 7, 4, 8, 8, 5, 7, 7, 3, 3, 7, 9, 7, 7, 10, 8, 6, 7, 7, 10, 5, 5
Offset: 1

Views

Author

Bernard Schott, Mar 18 2023

Keywords

Comments

For n <= 1530, only a(13) = 1 (answer to Smaradanche problem 19).
First semiprimes appear in A007942 at indices 4, 17, 23 since a(4) = a(17) = a(23) = 2.

Examples

			a(4) = 2 since 4321234 = 2 * 2160617;
a(6) = 8 since 65432123456 = 2^6 * 7 * 146053847;
a(12) = 5 since 12111098765432123456789101112 = 2^3*60800821*24899126702236725259;
a(13) = 1 since 131211109876543212345678910111213 is prime.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A360736(n): return sum(factorint(int(''.join(map(str,range(n,1,-1)))+''.join(map(str,range(1,n+1))))).values()) # Chai Wah Wu, Mar 21 2023

Formula

a(n) = A001222(A007942(n)).

Extensions

a(36)-a(54) from Amiram Eldar, Mar 19 2023

A361624 Number of distinct prime factors in decimal concatenation of integer (n, n-1, ..., 2, 1, 2, ..., n-1, n) = A007942(n).

Original entry on oeis.org

0, 2, 3, 2, 5, 3, 3, 4, 3, 3, 3, 3, 1, 4, 6, 2, 2, 3, 4, 7, 4, 8, 2, 3, 4, 6, 5, 7, 5, 6, 6, 3, 5, 7, 4, 5, 8, 5, 6, 6, 3, 3, 7, 7, 7, 7, 10, 7, 6, 6, 7, 4, 5, 5, 7
Offset: 1

Views

Author

Bernard Schott, Mar 18 2023

Keywords

Comments

a(n) < A360736(n) when n > 10 is a multiple of 4 or of 25, since, for these indices, A007942(n) is divisible by 2^2 or 5^2; but this inequality holds also, for other indices: for n = 6 (see example) and n = 39 where A007942(39) = 29 * 617^2 * 10185403128074353 * ...

Examples

			a(4) = 2 since 4321234 = 2 * 2160617;
a(6) = 3 since 65432123456 = 2^6 * 7 * 146053847.
		

Crossrefs

Programs

  • Python
    from sympy import primefactors
    def A361624(n): return len(primefactors(int(''.join(map(str,range(n,1,-1)))+''.join(map(str,range(1,n+1)))))) # Chai Wah Wu, Mar 21 2023

Formula

a(n) = A001221(A007942(n)).

Extensions

a(36)-a(54) from Amiram Eldar, Mar 19 2023
a(42) corrected by Sean A. Irvine, Sep 26 2023
a(55) from Sean A. Irvine, Oct 16 2023

A074836 a(1) = 1, a(n) = the largest prime divisor of concatenation of sequence (n,n-1,..,2,1,2,..,n-1,n) A007942.

Original entry on oeis.org

1, 53, 353, 2160617, 479, 146053847, 18533465459, 18588601, 444444443, 10987654321234567891, 41824630287288128897, 24899126702236725259, 131211109876543212345678910111213, 59722151033999393, 1081735780698166140181, 40378532802777469135803086419727527803285379
Offset: 1

Views

Author

Jason Earls, Sep 09 2002

Keywords

Examples

			a(4) is 2160617 because 4321234 = 2.'2160617'.
		

Crossrefs

Cf. A007942.

Programs

  • Mathematica
    Table[FactorInteger[FromDigits[Join[Flatten[IntegerDigits/@ Range[ n,1,-1]],Flatten[IntegerDigits/@Range[2,n]]]]][[-1,1]],{n,2,15}] (* Harvey P. Dale, Sep 05 2015 *)

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010
More terms from Harvey P. Dale, Sep 05 2015
a(1)=1 inserted by Sean A. Irvine, Jan 30 2025

A110760 a(n) = number of divisors of the concatenation of n,n-1,...3,2,1,2,3,...,n-1,n.

Original entry on oeis.org

1, 6, 8, 4, 32, 28, 8, 16, 8, 8, 8, 16, 2, 16, 64, 6, 4, 8, 16, 384, 16, 256, 4, 12, 24, 64, 32, 256, 32, 64, 64, 12, 32, 128, 16, 80, 256, 32, 96, 96, 8, 8, 128, 256, 128, 128, 1024, 192, 64, 96, 128, 64, 32, 32, 128
Offset: 1

Views

Author

Amarnath Murthy, Aug 11 2005

Keywords

Examples

			a(3) = tau(32123) = 8.
		

Crossrefs

Formula

a(n) = A000005(A007942(n)). - Michel Marcus, Mar 22 2023

Extensions

More terms from Ryan Propper, Jul 21 2006
Corrected and extended by Tyler Busby, Feb 12 2023
a(45)-a(55) from Tyler Busby, Feb 26 2023

A007943 Concatenation of sequence (1,3,..,2n-1,2n,2n-2,..,2).

Original entry on oeis.org

12, 1342, 135642, 13578642, 13579108642, 135791112108642, 1357911131412108642, 13579111315161412108642, 135791113151718161412108642, 1357911131517192018161412108642
Offset: 1

Views

Author

R. Muller

Keywords

References

  • M. Le, Perfect Powers in the Smarandache Permutation Sequence, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 148-149.

Crossrefs

Cf. A007942.

Programs

  • Mathematica
    Table[FromDigits[Join[Flatten[IntegerDigits/@Range[1,2n+1,2]],Flatten[ IntegerDigits/@ Range[2n+2,2,-2]]]],{n,0,10}] (* Harvey P. Dale, Jul 30 2021 *)

A272617 Concatenation of the numbers from n down to 1 with numbers from 1 to n.

Original entry on oeis.org

11, 2112, 321123, 43211234, 5432112345, 654321123456, 76543211234567, 8765432112345678, 987654321123456789, 1098765432112345678910, 11109876543211234567891011, 121110987654321123456789101112, 1312111098765432112345678910111213, 14131211109876543211234567891011121314
Offset: 1

Views

Author

Keywords

Comments

Conjecture: a(1) is the only prime number.
No other prime terms up to a(8000). - Giovanni Resta, May 07 2016

Examples

			a(1) = concatenate("1", "1") = 11.
a(2) = concatenate("2", "1", "1", "2") = 2112.
a(3) = concatenate("3", "2", "1", "1", "2", "3") = 321123.
		

Crossrefs

Programs

  • Mathematica
    FromDigits@Flatten@IntegerDigits@Join[Reverse@#, #] & /@ Table[Range@n, {n, 20}]
  • PARI
    a(n)={fromdigits(concat(concat(Vecrev(vector(n,i,digits(i)))), concat(vector(n,i,digits(i)))))} \\ Andrew Howroyd, Dec 23 2019

Formula

a(n) = A000422(n) concatenated with A007908(n).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 23 2019

A261135 Decimal value a(n) of the binary number b(n) obtained by starting from n, sequentially concatenating all binary numbers down to 1 and then sequentially concatenating all binary numbers from 2 up to n.

Original entry on oeis.org

1, 22, 475, 20188, 1472229, 112441134, 8415721847, 1234163177336, 336405959636873, 95454487901599898, 26891544907776231851, 7513814442828887530172, 2084725487959034609380301, 574954374994698424018451678, 157752074714160807772190133743, 86177704805459827544499089423856
Offset: 1

Views

Author

Umut Uludag, Aug 10 2015

Keywords

Examples

			a(1) = binary_to_decimal(1) = 1;
a(2) = binary_to_decimal(10110) = 22;
a(3) = binary_to_decimal(111011011) = 475;
a(4) = binary_to_decimal(100111011011100) = 20188.
		

Crossrefs

Cf. A007942 for a base-10 version.
Cf. A173427 for an inverted ordering of repeated binary numbers.

Programs

  • Mathematica
    Table[d = IntegerDigits[#, 2] & /@ Range@ n; FromDigits[#, 2] &@
    Flatten[{Flatten@ Reverse@ d, Flatten@ Rest@ d}, 1], {n, 16}] (* Michael De Vlieger, Aug 20 2015 *)

Formula

a(n) = binary_to_decimal(concatenate(binary(n), binary(n-1), binary(n-2), ..., 11, 10, 1, 10, 11, ..., binary(n-2), binary(n-1), binary(n)))

Extensions

a(11)-a(16) from Michael De Vlieger, Aug 20 2015

A287294 Concatenation of sequence (2n-1,2n-3,..,3,1,3,..,2n-3,2n-1).

Original entry on oeis.org

1, 313, 53135, 7531357, 975313579, 1197531357911, 13119753135791113, 151311975313579111315, 1715131197531357911131517, 19171513119753135791113151719, 211917151311975313579111315171921, 2321191715131197531357911131517192123
Offset: 1

Views

Author

XU Pingya, May 22 2017

Keywords

Comments

For n <= 1400, a(2) = 313, a(10) = 19171513119753135791113151719, a(12) = 2321191715131197531357911131517192123 and a(110) = 219217..313..217219 are primes.

Crossrefs

Cf. A007942.

Programs

  • Mathematica
    Block[{nn = 12, s}, s = IntegerDigits@ Range[1, 2 nn - 1, 2]; Table[FromDigits@ Flatten@ Join[Reverse[Rest@ #], #] &@ Take[s, n], {n, nn}]] (* Michael De Vlieger, May 23 2017 *)
Showing 1-8 of 8 results.