cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108674 a(n) = (n+1)^2 * (n+2)^2 * (2*n+3) / 12.

Original entry on oeis.org

1, 15, 84, 300, 825, 1911, 3920, 7344, 12825, 21175, 33396, 50700, 74529, 106575, 148800, 203456, 273105, 360639, 469300, 602700, 764841, 960135, 1193424, 1470000, 1795625, 2176551, 2619540, 3131884, 3721425, 4396575, 5166336, 6040320, 7028769, 8142575
Offset: 0

Views

Author

Emeric Deutsch, Jun 17 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
This is the case P(3,n) of the family of sequences defined in A132458. - Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007
Using the triangular numbers 0, 1, 3, ..., create a sequence of advancing sums of k-tuples with k=n*(n+1)/2 of the odd numbers: 0, 1, 15, 84, 300, 825, 1911, 3920, ... . This begins 0, then 1, then 3+5+7=15, then 9+11+13+15+17+19=84, then 21+23+...+39=300 and so on. - J. M. Bergot, Dec 08 2014
Partial sums of A008354. - J. M. Bergot, Dec 19 2014
Coefficients in the terminating series identity 1 - 15*n/(n + 4) + 84*n*(n - 1)/((n + 4)*(n + 5)) - 300*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 2,3,4,.... Cf. A000330. - Peter Bala, Feb 12 2019

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 231, # 33).

Crossrefs

Cf. A000217, A000330, A008354 (first diffs.), A132458.

Programs

Formula

G.f.: (1+z)*(1+8*z+z^2)/(1-z)^6.
a(n) = Sum_{j=1..n+1} j^2 Sum_{i=1..n+1} i. - Alexander Adamchuk, Jun 25 2006
a(n) = A000330(n+1) * A000217(n+1). - Daniel Suteu, Nov 26 2020
E.g.f.: exp(x)*(12 + 168*x + 330*x^2 + 184*x^3 + 35*x^4 + 2*x^5)/12. - Stefano Spezia, Mar 02 2022
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) 192*log(2) - 132.
Sum_{n>=0} (-1)^n/a(n) = 2*Pi^2 - 48*Pi + 132. (End)

A269237 a(n) = (n + 1)^2*(5*n^2 + 10*n + 2)/2.

Original entry on oeis.org

1, 34, 189, 616, 1525, 3186, 5929, 10144, 16281, 24850, 36421, 51624, 71149, 95746, 126225, 163456, 208369, 261954, 325261, 399400, 485541, 584914, 698809, 828576, 975625, 1141426, 1327509, 1535464, 1766941, 2023650, 2307361, 2619904, 2963169, 3339106, 3749725, 4197096
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Partial sums of centered dodecahedral numbers (A005904).

Crossrefs

Programs

  • Magma
    [(n + 1)^2*(5*n^2 + 10*n + 2)/2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2017
  • Maple
    A269237:=n->(n + 1)^2*(5*n^2 + 10*n + 2)/2: seq(A269237(n), n=0..50); # Wesley Ivan Hurt, Oct 15 2017
  • Mathematica
    Table[(n + 1)^2 ((5 n^2 + 10 n + 2)/2), {n, 0, 35}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 34, 189, 616, 1525}, 36]
  • PARI
    x='x+O('x^99); Vec((1+29*x+29*x^2+x^3)/(1-x)^5) \\ Altug Alkan, Apr 10 2016
    

Formula

G.f.: (1 + 29*x + 29*x^2 + x^3)/(1 - x)^5.
E.g.f.: exp(x)*(2 + 66*x + 122*x^2 + 50*x^3 + 5*x^4)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} 1/a(n) = (5 - Pi^2 - sqrt(15)*Pi*cot(sqrt(3/5)*Pi))/9 = 1.0377796966... . - Vaclav Kotesovec, Apr 10 2016

A329650 Numbers that are sums of consecutive centered icosahedral numbers (A005902).

Original entry on oeis.org

1, 13, 14, 55, 68, 69, 147, 202, 215, 216, 309, 456, 511, 524, 525, 561, 870, 923, 1017, 1072, 1085, 1086, 1415, 1484, 1793, 1940, 1995, 2008, 2009, 2057, 2338, 2869, 2899, 3208, 3355, 3410, 3423, 3424, 3472, 3871, 4395, 4926, 4956, 5083, 5265, 5412, 5467, 5480, 5481, 6341, 6525, 6740
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

Showing 1-3 of 3 results.