cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008498 4-dimensional centered tetrahedral numbers.

Original entry on oeis.org

1, 6, 21, 56, 126, 251, 456, 771, 1231, 1876, 2751, 3906, 5396, 7281, 9626, 12501, 15981, 20146, 25081, 30876, 37626, 45431, 54396, 64631, 76251, 89376, 104131, 120646, 139056, 159501, 182126
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of (1,5,10,10,5,0,0,0,...). - Paul Barry, Jul 01 2003
If X is an n-set and Y a fixed 5-subset of X then a(n-5) is equal to the number of 5-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Also the sum of five consecutive terms of A000332. - Bruno Berselli, Jun 18 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 224 (general formula for n-th centered polytope number).

Crossrefs

Programs

  • GAP
    List([0..40], n-> Binomial(n+5,5) - Binomial(n,5)); # G. C. Greubel, Nov 08 2019
  • Magma
    [(5*n^4+10*n^3+55*n^2+50*n+24)/24: n in [0..30] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Magma
    [Binomial(n+5,5) - Binomial(n,5): n in [0..40]]; // G. C. Greubel, Nov 08 2019
    
  • Maple
    [seq(binomial(n+5,5)-binomial(n,5), n=0..45)]; # Zerinvary Lajos, Jul 21 2006
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1}, {1,6,21,56,126}, 40] (* Harvey P. Dale, Dec 18 2013 *)
    Table[1 + 5n(n+1)(n^2 +n +10)/24, {n, 0, 40}] (* Bruno Berselli, Jun 18 2015 *)
  • Sage
    [binomial(n+5,5) - binomial(n,5) for n in (0..40)] # G. C. Greubel, Nov 08 2019
    

Formula

G.f.: (1-x^5)/(1-x)^6 = (1 +x +x^2 +x^3 +x^4)/(1-x)^5.
a(n) = C(n,0) + 5*C(n,1) + 10*C(n,2) + 10*C(n,3) + 5*C(n,4). - Paul Barry, Jul 01 2003
a(n) = (5*n^4 + 10*n^3 + 55*n^2 + 50*n + 24)/24. - Paul Barry, Jul 01 2003
a(n) = binomial(n+5,5) - binomial(n,5). - Zerinvary Lajos, Jul 21 2006
a(n) = 1 + 5*A006522(n+2). - Bruno Berselli, Jun 18 2015
E.g.f.: (24 + 120*x + 120*x^2 + 40*x^3 + 5*x^4)*exp(x)/24. - G. C. Greubel, Nov 08 2019