A008498 4-dimensional centered tetrahedral numbers.
1, 6, 21, 56, 126, 251, 456, 771, 1231, 1876, 2751, 3906, 5396, 7281, 9626, 12501, 15981, 20146, 25081, 30876, 37626, 45431, 54396, 64631, 76251, 89376, 104131, 120646, 139056, 159501, 182126
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 224 (general formula for n-th centered polytope number).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([0..40], n-> Binomial(n+5,5) - Binomial(n,5)); # G. C. Greubel, Nov 08 2019
-
Magma
[(5*n^4+10*n^3+55*n^2+50*n+24)/24: n in [0..30] ]; // Vincenzo Librandi, Aug 21 2011
-
Magma
[Binomial(n+5,5) - Binomial(n,5): n in [0..40]]; // G. C. Greubel, Nov 08 2019
-
Maple
[seq(binomial(n+5,5)-binomial(n,5), n=0..45)]; # Zerinvary Lajos, Jul 21 2006
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1}, {1,6,21,56,126}, 40] (* Harvey P. Dale, Dec 18 2013 *) Table[1 + 5n(n+1)(n^2 +n +10)/24, {n, 0, 40}] (* Bruno Berselli, Jun 18 2015 *)
-
Sage
[binomial(n+5,5) - binomial(n,5) for n in (0..40)] # G. C. Greubel, Nov 08 2019
Formula
G.f.: (1-x^5)/(1-x)^6 = (1 +x +x^2 +x^3 +x^4)/(1-x)^5.
a(n) = C(n,0) + 5*C(n,1) + 10*C(n,2) + 10*C(n,3) + 5*C(n,4). - Paul Barry, Jul 01 2003
a(n) = (5*n^4 + 10*n^3 + 55*n^2 + 50*n + 24)/24. - Paul Barry, Jul 01 2003
a(n) = binomial(n+5,5) - binomial(n,5). - Zerinvary Lajos, Jul 21 2006
a(n) = 1 + 5*A006522(n+2). - Bruno Berselli, Jun 18 2015
E.g.f.: (24 + 120*x + 120*x^2 + 40*x^3 + 5*x^4)*exp(x)/24. - G. C. Greubel, Nov 08 2019
Comments