A008646 Molien series for cyclic group of order 5.
1, 1, 3, 7, 14, 26, 42, 66, 99, 143, 201, 273, 364, 476, 612, 776, 969, 1197, 1463, 1771, 2126, 2530, 2990, 3510, 4095, 4751, 5481, 6293, 7192, 8184, 9276, 10472, 11781, 13209, 14763, 16451, 18278, 20254, 22386, 24682, 27151, 29799, 32637, 35673
Offset: 0
References
- B. Sturmfels, Algorithms in Invariant Theory, Springer, '93, p. 65.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025. See p. 19.
- Mónica A. Reyes, Cristina Dalfó, Miguel Àngel Fiol, and Arnau Messegué, A general method to find the spectrum and eigenspaces of the k-token of a cycle, and 2-token through continuous fractions, arXiv:2403.20148 [math.CO], 2024. See p. 6.
- Index entries for sequences related to groups
- Index entries for Molien series
- Index entries for sequences related to necklaces
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1,1,-4,6,-4,1).
Programs
-
Magma
[Ceiling((n+4)*(n+3)*(n+2)*(n+1)/120): n in [0..50]]; // Vincenzo Librandi, Jun 11 2013
-
Maple
seq(coeff(series((1+x^2+3*x^3+4*x^4+6*x^5+4*x^6+3*x^7+x^8+x^10)/((1-x)* (1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)), x, n+1), x, n), n = 0..50); # corrected by G. C. Greubel, Sep 06 2019 seq(ceil(binomial(n,4)/5), n=4..41); # Zerinvary Lajos, Jan 12 2009
-
Mathematica
k = 5; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *) CoefficientList[Series[(1 +x^2 +3*x^3 +4*x^4 +6*x^5 +4*x^6 +3*x^7 +x^8 +x^10)/((1-x)*(1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)), {x,0,50}], x] (* Vincenzo Librandi, Jun 11 2013 *) LinearRecurrence[{4,-6,4,-1,1,-4,6,-4,1}, {1,1,3,7,14,26,42,66,99}, 50] (* Harvey P. Dale, Jan 11 2017 *)
-
PARI
a(n)=ceil((n+4)*(n+3)*(n+2)*(n+1)/120)
-
PARI
Vec((1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1-x^5)) + O(x^50)) \\ Altug Alkan, Oct 31 2015
-
Sage
[ceil(binomial(n+5,5)/(n+5)) for n in (0..50)] # G. C. Greubel, Sep 06 2019
Formula
G.f.: (1 +x^2 +3*x^3 +4*x^4 +6*x^5 +4*x^6 +3*x^7 +x^8 +x^10)/((1-x)*(1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)).
a(-5-n) = a(n) for all integers.
a(n) = ceiling( binomial(n+5, 5) / (n+5) ).
G.f.: (1 -3*x +5*x^2 -3*x^3 +x^4)/((1-x)^4*(1-x^5)). - Michael Somos, Dec 04 2001
a(n) = (n^4 +10*n^3 +35*n^2 +50*n +24*(3 -2*(-1)^(2^(n-5*floor(n/5)) )))/120. - Luce ETIENNE, Oct 31 2015
G.f.: (4/(1-x^5) + 1/(1-x)^5)/5. - Herbert Kociemba, Oct 15 2016
Comments