cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008646 Molien series for cyclic group of order 5.

Original entry on oeis.org

1, 1, 3, 7, 14, 26, 42, 66, 99, 143, 201, 273, 364, 476, 612, 776, 969, 1197, 1463, 1771, 2126, 2530, 2990, 3510, 4095, 4751, 5481, 6293, 7192, 8184, 9276, 10472, 11781, 13209, 14763, 16451, 18278, 20254, 22386, 24682, 27151, 29799, 32637, 35673
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of necklaces with 5 black beads and n white beads.
The g.f. is Z(C_5,x), the 5-variate cycle index polynomial for the cyclic group C_5, with substitution x[i]->1/(1-x^i), i=1,...,5. Therefore by Polya enumeration a(n) is the number of cyclically inequivalent 5-necklaces whose 5 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_5,x). - Wolfdieter Lang, Feb 15 2005

References

  • B. Sturmfels, Algorithms in Invariant Theory, Springer, '93, p. 65.

Crossrefs

Programs

  • Magma
    [Ceiling((n+4)*(n+3)*(n+2)*(n+1)/120): n in [0..50]]; // Vincenzo Librandi, Jun 11 2013
    
  • Maple
    seq(coeff(series((1+x^2+3*x^3+4*x^4+6*x^5+4*x^6+3*x^7+x^8+x^10)/((1-x)* (1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)), x, n+1), x, n), n = 0..50); # corrected by G. C. Greubel, Sep 06 2019
    seq(ceil(binomial(n,4)/5), n=4..41); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    k = 5; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    CoefficientList[Series[(1 +x^2 +3*x^3 +4*x^4 +6*x^5 +4*x^6 +3*x^7 +x^8 +x^10)/((1-x)*(1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)), {x,0,50}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{4,-6,4,-1,1,-4,6,-4,1}, {1,1,3,7,14,26,42,66,99}, 50] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    a(n)=ceil((n+4)*(n+3)*(n+2)*(n+1)/120)
    
  • PARI
    Vec((1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1-x^5)) + O(x^50)) \\ Altug Alkan, Oct 31 2015
    
  • Sage
    [ceil(binomial(n+5,5)/(n+5)) for n in (0..50)] # G. C. Greubel, Sep 06 2019

Formula

G.f.: (1 +x^2 +3*x^3 +4*x^4 +6*x^5 +4*x^6 +3*x^7 +x^8 +x^10)/((1-x)*(1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)).
a(-5-n) = a(n) for all integers.
a(n) = ceiling( binomial(n+5, 5) / (n+5) ).
G.f.: (1 -3*x +5*x^2 -3*x^3 +x^4)/((1-x)^4*(1-x^5)). - Michael Somos, Dec 04 2001
a(n) = (n^4 +10*n^3 +35*n^2 +50*n +24*(3 -2*(-1)^(2^(n-5*floor(n/5)) )))/120. - Luce ETIENNE, Oct 31 2015
G.f.: (4/(1-x^5) + 1/(1-x)^5)/5. - Herbert Kociemba, Oct 15 2016