cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A205967 a(n) = Fibonacci(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.

Original entry on oeis.org

1, 12, 36, 24, 252, 360, 288, 1248, 3780, 408, 11880, 12816, 12096, 39144, 108576, 43920, 367164, 344952, 93024, 1003440, 3409560, 1050816, 7651152, 8253216, 8346240, 27909300, 61182072, 2357016, 213568992, 185122440, 179720640, 516967296, 1646801604, 507539232
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008653: 1 + 12*Sum_{n>=1} Chi(n,3)*n*x^n/(1-x^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 12*x + 36*x^2 + 24*x^3 + 252*x^4 + 360*x^5 + 288*x^6 +...
where A(x) = 1 + 1*12*x + 1*36*x^2 + 2*12*x^3 + 3*84*x^4 + 5*72*x^5 + 8*36*x^6 +...+ Fibonacci(n)*A008653(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 12*( 1*1*x/(1-x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 13*7*x^7/(1-29*x^7-x^14) + 21*8*x^8/(1-47*x^8-x^16)  +...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0, ...].
		

Crossrefs

Cf. A209447 (Pell variant).

Programs

  • Mathematica
    terms = 34; s = 1 + 12*Sum[Fibonacci[n]*KroneckerSymbol[n, 3]^2*n*(x^n/(1 - LucasL[n]*x^n + (-1)^n*x^(2*n))), {n, 1, terms}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 05 2017 *)
    b[n_] := If[n < 1, Boole[n == 0], 12 Sum[If[Mod[d, 3] > 0, d, 0], {d, Divisors@n}]]; Table[If[n == 0, 1, b[n]*Fibonacci[n]], {n, 0, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 + 12*sum(m=1,n,fibonacci(m)*kronecker(m,3)^2*m*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 12*Sum_{n>=1} Fibonacci(n)*Chi(n,3)*n*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).

A209447 a(n) = Pell(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.

Original entry on oeis.org

1, 12, 72, 60, 1008, 2088, 2520, 16224, 73440, 11820, 513648, 826704, 1164240, 5621448, 23265216, 14041800, 175149504, 245524824, 98791560, 1590026160, 8061191712, 3706940640, 40272058656, 64816900128, 97801149600, 487966581012, 1596075244848, 91744440540
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008653: 1 + 12*Sum_{n>=1} Chi(n,3)*n*x^n/(1-x^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 12*x + 72*x^2 + 60*x^3 + 1008*x^4 + 2088*x^5 + 2520*x^6 +...
where A(x) = 1 + 1*12*x + 2*36*x^2 + 5*12*x^3 + 12*84*x^4 + 29*72*x^5 + 70*36*x^6 +...+ Pell(n)*A008653(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 12*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 169*7*x^7/(1-478*x^7-x^14) + 408*8*x^8/(1-1154*x^8-x^16)  +...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A008653[n_]:= If[n < 1, Boole[n == 0], 12*Sum[If[Mod[d, 3] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A008653[n], {n, 1, 1000}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 12*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 12*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A008655 Theta series of direct sum of 4 copies of hexagonal lattice.

Original entry on oeis.org

1, 24, 216, 888, 1752, 3024, 7992, 8256, 14040, 24216, 27216, 31968, 64824, 52752, 74304, 111888, 112344, 117936, 217944, 164640, 220752, 305472, 287712, 292032, 519480, 378024, 474768, 654072
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Convolution of A008654 and A004016. Convolution square of A008653. - R. J. Mathar, Feb 22 2021

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.

Programs

  • Maple
    A008655 := proc(n)
            add( A004016(i)*x^i,i=0..n) ;
            coeftayl(%^4,x=0,n) ;
    end proc: # R. J. Mathar, Feb 22 2021
  • Mathematica
    terms = 28; s = (EllipticTheta[3, 0, q]^3 + EllipticTheta[3, Pi/3, q]^3 + EllipticTheta[3, 2 Pi/3, q]^3)^4/(81*EllipticTheta[3, 0, q^3]^4) + O[q]^(2 terms); CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 07 2017, from LatticeData(A2) *)

Formula

Expansion of (theta_3(z)*theta_3(3z) + theta_2(z)*theta_2(3z))^4.

A186100 Expansion of 2 * a(q^2)^2 - a(q)^2 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -12, -12, -12, -12, -72, -12, -96, -12, -12, -72, -144, -12, -168, -96, -72, -12, -216, -12, -240, -72, -96, -144, -288, -12, -372, -168, -12, -96, -360, -72, -384, -12, -144, -216, -576, -12, -456, -240, -168, -72, -504, -96, -528, -144, -72, -288
Offset: 0

Views

Author

Michael Somos, Feb 12 2011

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 12*q - 12*q^2 - 12*q^3 - 12*q^4 - 72*q^5 - 12*q^6 - 96*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -12 DivisorSum[ n, # Boole[ 1 == GCD[#, 6]] &]]; (* Michael Somos, Jul 07 2015 *)
    a[ n_] := SeriesCoefficient[(EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^3])^2 - 1/2 (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)])^2, {x, 0, n}]; (* Michael Somos, Jul 07 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, d * (1 == gcd( d, 6) ) ) )};
    
  • PARI
    {a(n) = if( n<1, n==0, -12 * direuler( p=2, n, 1 / (1 - X) / (1 - (p>3) * p * X)) [n])};

Formula

Expansion of b(x) * b(x^2) - c(x) * c(x^2) in powers of x where b(), c() are cubic AGM functions.
Expansion of (phi(-x) * phi(-x^3))^2 - 8 * x * (psi(x) * psi(x^3))^2 in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (P(q) - 2*P(q^2) - 3*P(q^3) + 6*P(q^6)) / 2 in powers of q where P() is a Ramanujan Eisenstein series. - Michael Somos, Jul 07 2015
a(n) = -12 * A186099(n) if n>0. a(2*n) = a(n). a(2*n + 1) = - A008653(2*n + 1). a(n) = 2 * A008653(n) - A008653(2*n) = A131946(n) - 8 * A111932(n) = A131943(n) - 9 * A121443(n).
a(3*n) = a(n). a(6*n + 5) = -72 * A098098(n).- Michael Somos, Jul 07 2015

A227131 Sum of divisors of n that are not divisible by 25. a(0) = 1.

Original entry on oeis.org

1, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 6, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 18, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144, 72, 195, 74, 114, 24, 140
Offset: 0

Views

Author

Michael Somos, Jul 02 2013

Keywords

Examples

			G.f. = 1 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 13*q^9 + ...
75 has six divisors: 1, 3, 5, 15, 25, 75, but both 25 and 75 are divisible by 25, thus not counted, and we have a(75) = 1+3+5+15 = 24. - _Antti Karttunen_, Nov 23 2017
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(25), 2), 66); A[1] + A[2] + 3*A[3] + 4*A[4] + 7*A[5]; /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ If[ Mod[ d, 25] > 0, d, 0], {d, Divisors @ n}]];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, if( d%25, d)))};
    
  • PARI
    {a(n) = if( n<1, n==0, 1 * (sigma(n) - if( n%25==0, 25 * sigma( n / 25))))};
    
  • Sage
    A = ModularForms( Gamma0(25), 2, prec=66) . basis(); A[0] + A[1] + 3*A[2] + 4*A[3] + 7*A[4];
    

Formula

a(n) is multiplicative with a(0) = 1, a(5^e) = 6 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (25 t)) = 25 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: 1 + Sum_{k>0} k * x^k / (1 - x^k) - Sum_{k>0} 25 * k * x^(25*k) / (1 - x^(25*k)).
Sum_{k=1..n} a(k) ~ (2*Pi^2/25) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

More terms from Antti Karttunen, Nov 23 2017

A359101 a(n) = phi(5 * n)/4.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 6, 4, 6, 5, 10, 4, 12, 6, 10, 8, 16, 6, 18, 10, 12, 10, 22, 8, 25, 12, 18, 12, 28, 10, 30, 16, 20, 16, 30, 12, 36, 18, 24, 20, 40, 12, 42, 20, 30, 22, 46, 16, 42, 25, 32, 24, 52, 18, 50, 24, 36, 28, 58, 20, 60, 30, 36, 32, 60, 20, 66, 32, 44, 30, 70, 24, 72, 36, 50, 36, 60, 24, 78
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[EulerPhi[5 #]/4 &, 79] (* Michael De Vlieger, Dec 16 2022 *)
  • PARI
    a(n) = eulerphi(5*n)/4;
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(-sum(k=1, N, moebius(5*k)*x^k/(1-x^k)^2))

Formula

G.f.: -Sum_{k>=1} mu(5 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(5^e) = 5^e, and a(p^e) = (p-1)*p^(e-1) if p != 5.
Dirichlet g.f.: zeta(s-1)/(zeta(s)*(1-1/5^s)).
Sum_{k=1..n} a(k) ~ (25/(8*Pi^2)) * n^2. (End)

A359102 a(n) = phi(7 * n)/6.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 4, 6, 4, 10, 4, 12, 7, 8, 8, 16, 6, 18, 8, 14, 10, 22, 8, 20, 12, 18, 14, 28, 8, 30, 16, 20, 16, 28, 12, 36, 18, 24, 16, 40, 14, 42, 20, 24, 22, 46, 16, 49, 20, 32, 24, 52, 18, 40, 28, 36, 28, 58, 16, 60, 30, 42, 32, 48, 20, 66, 32, 44, 28, 70, 24, 72, 36, 40, 36, 70, 24, 78
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[EulerPhi[7 #]/6 &, 79] (* Michael De Vlieger, Dec 16 2022 *)
  • PARI
    a(n) = eulerphi(7*n)/6;
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(-sum(k=1, N, moebius(7*k)*x^k/(1-x^k)^2))

Formula

G.f.: -Sum_{k>=1} mu(7 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(7^e) = 7^e, and a(p^e) = (p-1)*p^(e-1) if p != 7.
Dirichlet g.f.: zeta(s-1)/(zeta(s)*(1-1/7^s)).
Sum_{k=1..n} a(k) ~ (49/(16*Pi^2)) * n^2. (End)

A242874 Expansion of b(q)^2 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, -6, 9, 12, -42, 18, 36, -48, 45, 12, -108, 36, 84, -84, 72, 72, -186, 54, 36, -120, 126, 96, -216, 72, 180, -186, 126, 12, -336, 90, 216, -192, 189, 144, -324, 144, 84, -228, 180, 168, -540, 126, 288, -264, 252, 72, -432, 144, 372, -342, 279, 216, -588
Offset: 0

Views

Author

Michael Somos, May 26 2014

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 6*q + 9*q^2 + 12*q^3 - 42*q^4 + 18*q^5 + 36*q^6 - 48*q^7 + 45*q^8 + ...
		

References

  • O. Kolberg, The coefficients of j(tau) modulo powers of 3, Acta Univ. Bergen., Series Math., Arbok for Universitetet I Bergen, Mat.-Naturv. Serie, 1962 No. 16, pp. 1-7. See t, page 1.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(9), 2), 53); A[1] - 6*A[2] + 9*A[3]; /* Michael Somos, Sep 27 2016 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^2, n))};
    
  • Sage
    A = ModularForms( Gamma0(9), 2, prec=53) . basis(); A[0] - 6*A[1] + 9*A[2];
    

Formula

Expansion of (eta(q)^3 / eta(q^3))^2 in powers of q.
Euler transform of period 3 sequence [-6, -6, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 243 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033686.
G.f.: Product_{k>0} ( (1 - x^k)^3 / (1 - x^(3*k)) )^2.
a(3*n) = A008653(n). a(3*n + 1) = -6 * A144614(n). a(3*n + 2) = 9 * A033686(n).
Convolution square of A005928.

A136747 Expansion of a(q)^2 * (b(q) * c(q) / 3)^3 in powers of q where a(), b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 6, -27, -92, 390, -162, -64, -1320, 729, 2340, -948, 2484, -5098, -384, -10530, 3856, 28386, 4374, -8620, -35880, 1728, -5688, -15288, 35640, 73975, -30588, -19683, 5888, 36510, -63180, -276808, 192096, 25596, 170316, -24960, -67068, 268526, -51720, 137646
Offset: 1

Views

Author

Michael Somos, Jan 20 2008

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 6*q^2 - 27*q^3 - 92*q^4 + 390*q^5 - 162*q^6 - 64*q^7 - 1320*q^8 + ...
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma0(3), 8), 40)[1]; /* Michael Somos, Oct 12 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^3])^6 ((QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3])^2, {q, 0, n}]; (* Michael Somos, May 28 2013 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^6 * sum(k=1, n, 12 * (sigma(3*k) - 3 * sigma(k)) * x^k, 1 + A), n))};
    
  • Sage
    CuspForms( Gamma0(3), 8, prec=40).0; # Michael Somos, May 28 2013
    

Formula

Expansion of (eta(q) * eta(q^3))^6 * ((eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3))^2 in powers of q.
a(n) is multiplicative with a(3^e) = (-27)^e, a(p^e) = a(p) * a(p^(e-1)) - p^7 * a(p^(e-2)) unless p = 3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^4*w + 512*u^3*w^2 + 131072*u^2*w^3 + 16777216*u*w^4 - 24*u^3*v*w - 9216*u^2*v*w^2 - 1572864*u*v*w^3 + 288*u^2*v^2*w + 73728*u*v^2*w^2 - u^2*v^3 - 1984*w*v^3*u - 65536*w^2*v^3 + 12*v^4*u + 3072*w*v^4 - 36*v^5.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 81 (t/i)^8 f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} (1 - x^k) * (1 - x^(3*k)))^6 * (Sum_{j,k in Z} x^(j*j + j*k + k*k))^2.
Convolution of A007332 and A008653.

A266288 Expansion of a(q)^2 * (c(q)/3)^3 in powers of q where a(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 15, 81, 241, 624, 1215, 2402, 3855, 6561, 9360, 14640, 19521, 28562, 36030, 50544, 61681, 83520, 98415, 130322, 150384, 194562, 219600, 279840, 312255, 390001, 428430, 531441, 578882, 707280, 758160, 923522, 986895, 1185840, 1252800, 1498848, 1581201
Offset: 1

Views

Author

Michael Somos, Dec 26 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Convolution of A008653 and A106402.

Examples

			G.f. = x + 15*x^2 + 81*x^3 + 241*x^4 + 624*x^5 + 1215*x^6 + 2402*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 5),37);  A[2];
  • Mathematica
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (With[{s = {1, -1, 0}[[Mod[#, 3, 1]]]}, ((#^4)^(#2 + 1) - s^(#2 + 1)) / (#^4 - s)] & @@@ FactorInteger[n])];
  • PARI
    {a(n) = my(A, U1, u3, U9); if( n<1, 0, n--; A = x * O(x^n); U1 = eta(x + A)^3; u3 = eta(x^3 + A); U9 = eta(x^9 + A)^3; polcoeff( U1 * u3^7 * (1 + 9*x*U9/U1)^2, n))};
    
  • PARI
    {a(n) = my(A, p, e, s); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, p^(4*e), s=-(-1)^(p%3);  ((p^4)^(e+1) - s^(e+1)) / (p^4 - s))))};
    

Formula

a(n) is multiplicative with a(p^e) = ((p^4)^(e+1) - s^(e+1)) / (p^4 - s) where s = 0 if p = 3, s = 1 if p == 1 (mod 3), s = -1 if p == 2 (mod 3).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 4*Pi^5/(729*sqrt(3)) = 0.9694405... (A344778). - Amiram Eldar, Nov 09 2023
Showing 1-10 of 10 results.