cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008679 Expansion of 1/((1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 5, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 7, 7, 7, 7, 7, 7, 8, 7
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 3 and 4. - Reinhard Zumkeller, Feb 09 2009
Convolution of A112689 (shifted left once) by A033999. - R. J. Mathar, Feb 13 2009
With four 0's prepended and offset 0, a(n) is the number of partitions of n into four parts whose largest three parts are equal. - Wesley Ivan Hurt, Jan 06 2021

Crossrefs

Programs

  • GAP
    a:=[1,0,0,1,1,0,1,1];; for n in [8..90] do a[n]:=a[n-3]+a[n-4]-a[n-7]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    seq(coeff(series(1/((1-x^3)*(1-x^4)), x, n+1), x, n), n = 0..90); # G. C. Greubel, Sep 09 2019
  • Mathematica
    LinearRecurrence[{0,0,1,1,0,0,-1}, {1,0,0,1,1,0,1}, 90] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
    CoefficientList[Series[1/((1-x)^2(1+x)(1+x+x^2)(1+x^2)), {x,0,90}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^90)); Vec(1/((1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008679_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x^3)*(1-x^4))).list()
    A008679_list(90) # G. C. Greubel, Sep 09 2019
    

Formula

a(n+12) = a(n) + 1. - Reinhard Zumkeller, Feb 09 2009
G.f.: 1/((1-x)^2*(1+x)*(1+x+x^2)*(1+x^2)). - R. J. Mathar, Feb 13 2009
a(n) = 1 + floor(n/3) + floor(-n/4). - Tani Akinari, Sep 02 2013
E.g.f.: (1/72)*(9*exp(-x)+21*exp(x)+6*exp(x)*x+18*cos(x)+24*exp(-x/2)*cos(sqrt(3)*x/2)-18*sin(x)+8*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)). - Stefano Spezia, Sep 09 2019
a(n) = A005044(n+3) - A005044(n+1). - Yuchun Ji, Oct 10 2020
From Wesley Ivan Hurt, Jan 17 2021: (Start)
a(n) = a(n-3) + a(n-4) - a(n-7).
a(n) = Sum_{k=1..floor((n+4)/4)} Sum_{j=k..floor((n+4-k)/3)} Sum_{i=j..floor((n+4-j-k)/2)} [j = i = n+4-i-k-j], where [ ] is the Iverson bracket. (End)