A008725 Molien series for 3-dimensional group [2,n] = *22n.
1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236, 244, 252, 261, 270, 279, 288, 297, 306
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 190
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
Programs
-
GAP
a:=[1,2,3,4,5,6,7,9,11];; for n in [10..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Sep 09 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^7)) )); // G. C. Greubel, Sep 09 2019 -
Maple
1/((1-x)^2*(1-x^7)): seq(coeff(series(%, x, n+1), x, n), n=0..80);
-
Mathematica
CoefficientList[Series[1/((1-x)^2*(1-x^7)), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 11 2013 *) LinearRecurrence[{2,-1,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,9,11}, 80] (* Harvey P. Dale, Sep 27 2014 *) a[ n_] := Floor[(n+4)*(n+5)/14]; (* Michael Somos, Nov 23 2023 *)
-
PARI
my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^7))) \\ G. C. Greubel, Sep 09 2019
-
PARI
{a(n) = (n+4)*(n+5)\14}; /* Michael Somos, Nov 23 2023 */
-
Sage
def A008725_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(1/((1-x)^2*(1-x^7))).list() A008725_list(80) # G. C. Greubel, Sep 09 2019
Formula
G.f.: 1/((1-x)^2*(1-x^7)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+7} floor(j/7).
a(n-7) = (1/2)*floor(n/7)*(2*n - 5 - 7*floor(n/7)). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Apr 20 2010
a(n) = A011867(n+5). - Pontus von Brömssen, Sep 27 2020
a(n) = a(-9-n) = A174738(n+7) = floor((n+4)*(n+5)/14) for all n in Z. - Michael Somos, Nov 23 2023
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Comments