cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008733 Molien series for 3-dimensional group [2+, n] = 2*(n/2).

Original entry on oeis.org

1, 0, 2, 1, 4, 2, 6, 4, 9, 6, 12, 9, 16, 12, 20, 16, 25, 20, 30, 25, 36, 30, 42, 36, 49, 42, 56, 49, 64, 56, 72, 64, 81, 72, 90, 81, 100, 90, 110, 100, 121, 110, 132, 121, 144, 132, 156, 144, 169, 156, 182, 169, 196, 182, 210, 196, 225, 210, 240, 225, 256
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    List([0..70], n-> Int((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16)); # G. C. Greubel, Jul 30 2019
  • Magma
    [Floor((n^2+5*n+13+3*(n+1)*(-1)^n)/16): n in [0..70]]; // Vincenzo Librandi, Aug 24 2013
    
  • Mathematica
    CoefficientList[Series[(1+x^3)/((1-x^2)^2*(1-x^4)), {x,0,70}], x] (* Vincenzo Librandi, Aug 24 2013 *)
    LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,0,2,1,4,2,6},70] (* Harvey P. Dale, Nov 23 2015 *)
  • PARI
    a(n)=((n^2+5*n+13+3*(n+1)*(-1)^n))\16 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [floor((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16) for n in (0..70)] # G. C. Greubel, Jul 30 2019
    

Formula

From R. J. Mathar, Nov 04 2008: (Start)
a(n) = A005232(n) - A005232(n-1).
G.f.: (1-x+x^2)/((1-x)^3*(1+x)^2*(1+x^2)). (End)
a(n) = floor((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16). - Tani Akinari, Aug 23 2013
a(n) = Sum_{i=1..floor((n+4)/2)} floor((i-(n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
a(n) = (2*n^2+10*n+13+3*(2*n+5)*(-1)^n+4*(-1)^((6*n-1+(-1)^n)/4))/32. - Luce ETIENNE, Jun 09 2015