A284249
Number T(n,k) of k-element subsets of [n] whose sum is a triangular number; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 1, 1, 3, 4, 5, 3, 1, 1, 1, 3, 5, 8, 6, 4, 1, 1, 1, 3, 7, 12, 11, 9, 4, 1, 1, 1, 3, 9, 16, 20, 18, 11, 5, 1, 1, 1, 4, 10, 22, 32, 35, 26, 14, 5, 1, 1, 1, 4, 12, 29, 48, 61, 55, 36, 17, 6, 1, 1, 1, 4, 14, 37, 70, 100, 106, 84, 48, 21, 6, 1, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 2, 2, 1, 1;
1, 2, 3, 3, 1, 1;
1, 3, 4, 5, 3, 1, 1;
1, 3, 5, 8, 6, 4, 1, 1;
1, 3, 7, 12, 11, 9, 4, 1, 1;
1, 3, 9, 16, 20, 18, 11, 5, 1, 1;
1, 4, 10, 22, 32, 35, 26, 14, 5, 1, 1;
1, 4, 12, 29, 48, 61, 55, 36, 17, 6, 1, 1;
1, 4, 14, 37, 70, 100, 106, 84, 48, 21, 6, 1, 1;
Columns k=0-10 give:
A000012,
A003056,
A320848,
A320849,
A320850,
A320851,
A320852,
A320853,
A320854,
A320855,
A320856.
-
b:= proc(n, s) option remember; expand(`if`(n=0,
`if`(issqr(8*s+1), 1, 0), b(n-1, s)+x*b(n-1, s+n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..16);
-
b[n_, s_] := b[n, s] = Expand[If[n == 0, If[IntegerQ @ Sqrt[8*s + 1], 1, 0], b[n - 1, s] + x*b[n - 1, s + n]]];
T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
Table[T[n], {n, 0, 16}] // Flatten (*Jean-François Alcover, May 29 2018, from Maple *)
A277619
Number of aperiodic necklaces (Lyndon words) with k<=4 black beads and n-k white beads.
Original entry on oeis.org
1, 2, 1, 2, 3, 6, 8, 14, 19, 28, 37, 51, 64, 84, 103, 129, 155, 189, 222, 265, 307, 359, 411, 474, 536, 611, 685, 772, 859, 960, 1060, 1176, 1291, 1422, 1553, 1701, 1848, 2014, 2179, 2363, 2547, 2751, 2954, 3179, 3403, 3649, 3895, 4164, 4432, 4725, 5017
Offset: 0
a(6)=8. The aperiodic necklaces are BWWWWW, BBWWWW, BWBWWW, BBBWWW, BBWBWW, BBWWBW, BBBBWW, and BBBWBW.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,-1,2,1,-1).
Mathematica section of
A032168 gives g.f. for k=m black beads and n-k white beads.
-
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *)
gf[x_,m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]),{i,1,m}]+x+1
(* Here we have the case m=4 *)
-
Vec((1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)) + O(x^60)) \\ Colin Barker, Oct 29 2016
A277629
Number of aperiodic necklaces (Lyndon words) with k<=5 black beads and n-k white beads.
Original entry on oeis.org
1, 2, 1, 2, 3, 6, 9, 17, 26, 42, 62, 93, 130, 183, 246, 329, 428, 553, 698, 877, 1082, 1328, 1608, 1937, 2307, 2736, 3215, 3762, 4369, 5055, 5810, 6657, 7584, 8614, 9737, 10976, 12320, 13795, 15388, 17126, 18997, 21029, 23208, 25565, 28085, 30799, 33694, 36801, 40105, 43641, 47392
Offset: 0
a(5)=6: The aperiodic necklaces are BWWWW, BBWWW, BWBWW, BBBWW, BBWBW, BBBBW.
- Index entries for linear recurrences with constant coefficients, signature (1, 2, -1, -2, 0, 1, -1, 0, 2, 1, -2, -1, 1).
Cf.
A001037 (k arbitrary),
A008747 (k<=3),
A277619 (k<=4). Mathematica section of
A032168 gives g.f. for k=m black beads and n-k white beads.
-
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *)
gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1
(* Here we have the case m=5 *)
A008751
Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)).
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 16, 19, 23, 26, 31, 35, 40, 45, 51, 56, 63, 69, 76, 83, 91, 98, 107, 115, 124, 133, 143, 152, 163, 173, 184, 195, 207, 218, 231, 243, 256, 269, 283, 296, 311, 325, 340, 355
Offset: 0
-
Concatenation([1,1,2], List([3..50], n-> Int(((n-1)^2 +17)/6))); # G. C. Greubel, Aug 04 2019
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^8)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 04 2019
-
CoefficientList[Series[(1+x^8)/((1-x)(1-x^2)(1-x^3)),{x,0,50}],x] (* Vincenzo Librandi, Feb 25 2012 *)
Join[{1,1,2}, Floor[((Range[3, 50] -1)^2 +17)/6]] (* G. C. Greubel, Aug 04 2019 *)
-
my(x='x+O('x^50)); Vec((1+x^8)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 04 2019
-
((1+x^8)/((1-x)*(1-x^2)*(1-x^3))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
A175812
Partial sums of ceiling(n^2/6).
Original entry on oeis.org
0, 1, 2, 4, 7, 12, 18, 27, 38, 52, 69, 90, 114, 143, 176, 214, 257, 306, 360, 421, 488, 562, 643, 732, 828, 933, 1046, 1168, 1299, 1440, 1590, 1751, 1922, 2104, 2297, 2502, 2718, 2947, 3188, 3442, 3709, 3990, 4284, 4593, 4916, 5254, 5607, 5976, 6360, 6761, 7178
Offset: 0
a(6) = 0 + 1 + 1 + 2 + 3 + 5 + 6 = 18.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,0,2,-1).
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
-
[Round((2*n+1)*(2*n^2+2*n+17)/72): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
-
seq(floor((n+1)*(2*n^2+n+17)/36),n=0..50)
-
Accumulate[Ceiling[Range[0,50]^2/6]] (* Harvey P. Dale, Jan 17 2016 *)
-
a(n) = (n+1)*(2*n^2+n+17)\36; \\ Altug Alkan, Sep 21 2018
A277631
Number of aperiodic necklaces (Lyndon words) with k<=6 black beads and n-k white beads.
Original entry on oeis.org
1, 2, 1, 2, 3, 6, 9, 18, 29, 51, 82, 135, 205, 315, 458, 662, 925, 1281, 1724, 2305, 3014, 3911, 4992, 6326, 7905, 9820, 12059, 14724, 17811, 21435, 25586, 30408, 35885, 42175, 49273, 57352, 66401, 76627, 88012, 100781, 114928, 130697, 148074, 167343, 188483, 211798, 237282, 265260, 295717, 329025, 365160
Offset: 0
a(6)=9. The aperiodic necklaces are BWWWWW, BBWWWW, BWBWWW, BBBWWW, BBWBWW, BBWWBW, BBBBWW, BBBWBW and BBBBBW.
- Index entries for linear recurrences with constant coefficients, signature (1, 2, -1, -2, 0, 2, -2, -2, 3, 3, -2, -2, 2, 0, -2, -1, 2, 1, -1).
-
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *)
gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1
(* Here we have the case m=6 *)
A277633
Number of aperiodic necklaces (Lyndon words) with k<=8 black beads and n-k white beads.
Original entry on oeis.org
1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 98, 180, 311, 546, 915, 1520, 2440, 3855, 5916, 8935, 13178, 19138, 27264, 38303, 52950, 72311, 97419, 129839, 171066, 223260, 288498, 369708, 469708, 592363, 741433, 921933, 1138761, 1398343, 1706956, 2072696, 2503513, 3009482, 3600515, 4289032, 5087253, 6010305, 7073122, 8293962
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -4, 1, 4, -1, -5, 2, 7, -1, -6, 0, 4, 0, -6, -1, 7, 2, -5, -1, 4, 1, -4, -2, 3, 1, -1).
The Mathematica section of
A032168 gives the g.f. for k=m black beads and n-k white beads.
-
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads. Here we have the case m=8 *)
gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1
Showing 1-7 of 7 results.
Comments