A008795 Molien series for 3-dimensional representation of dihedral group D_6 of order 6.
1, 0, 3, 1, 6, 3, 10, 6, 15, 10, 21, 15, 28, 21, 36, 28, 45, 36, 55, 45, 66, 55, 78, 66, 91, 78, 105, 91, 120, 105, 136, 120, 153, 136, 171, 153, 190, 171, 210, 190, 231, 210, 253, 231, 276, 253, 300, 276, 325, 300, 351, 325, 378, 351, 406, 378, 435, 406, 465, 435, 496, 465, 528, 496
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Kival Ngaokrajang, Illustration of initial terms
- Ira Rosenholtz, Problem 1584, Mathematics Magazine, Vol. 72 (1999), p. 408.
- Index entries for sequences related to groups
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
GAP
a := [1,0,3,1,6];; for n in [6..70] do a[n] := a[n-1] + 2*a[n-2] -2*a[n-3] -a[n-4] +a[n-5]; od; a; # Muniru A Asiru, Feb 01 2018
-
Magma
[(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16: n in [0..70] ]; // Vincenzo Librandi, Aug 21 2011
-
Maple
a:= n-> binomial(n/2+2-3*irem(n, 2)/2, 2): seq(a(n), n=0..70); # Muniru A Asiru, Feb 01 2018
-
Mathematica
Table[If[EvenQ[n], Binomial[n/2+2, 2], Binomial[(n+1)/2, 2]], {n, 0, 70}] CoefficientList[Series[(1+x^3)/(1-x^2)^3, {x, 0, 70}], x] (* Robert G. Wilson v, Feb 05 2012 *) a[ n_]:= Binomial[ Quotient[n, 2] + 2 - Mod[n, 2], 2]; (* Michael Somos, Feb 01 2018 *) a[ n_]:= With[ {m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ (1 - x + x^2) / ((1 - x)^3 (1 + x)^2), {x, 0, m}]]; (* Michael Somos, Feb 01 2018 *) LinearRecurrence[{1,2,-2,-1,1}, {1,0,3,1,6}, 70] (* Robert G. Wilson v, Feb 01 2018 *)
-
PARI
a(n)=(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16 \\ Charles R Greathouse IV, Oct 22 2015
-
PARI
{a(n) = binomial(n\2 + 2 - n%2, 2)}; /* Michael Somos, Feb 01 2018 */
-
Sage
[(2*n^2 +6*n +7 +3*(2*n+3)*(-1)^n)/16 for n in (0..70)] # G. C. Greubel, Sep 11 2019
Formula
The signed version with g.f. (1-x^3)/(1-x^2)^3 is the inverse binomial transform of A084861. - Paul Barry, Jun 12 2003
a(n) = binomial(n/2+2, 2) for n even, binomial((n+1)/2, 2) for n odd. - Rob Pratt, Jul 12 2004
From Paul Barry, Jul 29 2004: (Start)
a(n-2) interleaves n(n+1)/2 and n(n-1)/2.
G.f.: (1-x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (2*n^2 + 6*n + 7 + 3*(2*n+3)*(-1)^n)/16. (End)
a(n) = n*(n+1)/2, n = +- 1, +- 2... - Omar E. Pol, Feb 05 2012
From Michael Somos, Feb 01 2018: (Start)
Euler transform of length 6 sequence [0, 3, 1, 0, 0, -1].
G.f.: (1 + x^3) / (1 - x^2)^3.
a(n) = a(-3-n) for all in Z. (End)
Extensions
Definition clarified by N. J. A. Sloane, Feb 02 2018
Comments