cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008795 Molien series for 3-dimensional representation of dihedral group D_6 of order 6.

Original entry on oeis.org

1, 0, 3, 1, 6, 3, 10, 6, 15, 10, 21, 15, 28, 21, 36, 28, 45, 36, 55, 45, 66, 55, 78, 66, 91, 78, 105, 91, 120, 105, 136, 120, 153, 136, 171, 153, 190, 171, 210, 190, 231, 210, 253, 231, 276, 253, 300, 276, 325, 300, 351, 325, 378, 351, 406, 378, 435, 406, 465, 435, 496, 465, 528, 496
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the number of ordered triples of positive integers which are the side lengths of a nondegenerate triangle of perimeter n. - Rob Pratt, Jul 12 2004
a(n) is the number of ways to distribute n identical objects into 3 distinguishable bins so that no bin contains an absolute majority of objects. - Geoffrey Critzer, Mar 17 2010
From Omar E. Pol, Feb 05 2012: (Start)
Also terms of A000217 and A000217-shifted interleaved.
Also 0 together with this sequence give the first row of the square array A194801. (End)
a(n) is the number of coins left after packing 3-curves coins patterns into fountain of coins base n. Refer to A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". See illustration in links. - Kival Ngaokrajang, Oct 12 2013

Crossrefs

Cf. A005044.
First differences of A053307.

Programs

  • GAP
    a := [1,0,3,1,6];; for n in [6..70] do a[n] := a[n-1] + 2*a[n-2] -2*a[n-3] -a[n-4] +a[n-5]; od; a; # Muniru A Asiru, Feb 01 2018
    
  • Magma
    [(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16: n in [0..70] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    a:= n-> binomial(n/2+2-3*irem(n, 2)/2, 2):
    seq(a(n), n=0..70); # Muniru A Asiru, Feb 01 2018
  • Mathematica
    Table[If[EvenQ[n], Binomial[n/2+2, 2], Binomial[(n+1)/2, 2]], {n, 0, 70}]
    CoefficientList[Series[(1+x^3)/(1-x^2)^3, {x, 0, 70}], x] (* Robert G. Wilson v, Feb 05 2012 *)
    a[ n_]:= Binomial[ Quotient[n, 2] + 2 - Mod[n, 2], 2]; (* Michael Somos, Feb 01 2018 *)
    a[ n_]:= With[ {m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ (1 - x + x^2) / ((1 - x)^3 (1 + x)^2), {x, 0, m}]]; (* Michael Somos, Feb 01 2018 *)
    LinearRecurrence[{1,2,-2,-1,1}, {1,0,3,1,6}, 70] (* Robert G. Wilson v, Feb 01 2018 *)
  • PARI
    a(n)=(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16 \\ Charles R Greathouse IV, Oct 22 2015
    
  • PARI
    {a(n) = binomial(n\2 + 2 - n%2, 2)}; /* Michael Somos, Feb 01 2018 */
    
  • Sage
    [(2*n^2 +6*n +7 +3*(2*n+3)*(-1)^n)/16 for n in (0..70)] # G. C. Greubel, Sep 11 2019

Formula

The signed version with g.f. (1-x^3)/(1-x^2)^3 is the inverse binomial transform of A084861. - Paul Barry, Jun 12 2003
a(n) = binomial(n/2+2, 2) for n even, binomial((n+1)/2, 2) for n odd. - Rob Pratt, Jul 12 2004
From Paul Barry, Jul 29 2004: (Start)
a(n-2) interleaves n(n+1)/2 and n(n-1)/2.
G.f.: (1-x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (2*n^2 + 6*n + 7 + 3*(2*n+3)*(-1)^n)/16. (End)
a(n) = n*(n+1)/2, n = +- 1, +- 2... - Omar E. Pol, Feb 05 2012
From Michael Somos, Feb 01 2018: (Start)
Euler transform of length 6 sequence [0, 3, 1, 0, 0, -1].
G.f.: (1 + x^3) / (1 - x^2)^3.
a(n) = a(-3-n) for all in Z. (End)

Extensions

Definition clarified by N. J. A. Sloane, Feb 02 2018