cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002246 a(1) = 3; for n > 1, a(n) = 4*phi(n); given a rational number r = p/q, where q>0, (p,q)=1, define its height to be max{|p|,q}; then a(n) = number of rational numbers of height n.

Original entry on oeis.org

3, 4, 8, 8, 16, 8, 24, 16, 24, 16, 40, 16, 48, 24, 32, 32, 64, 24, 72, 32, 48, 40, 88, 32, 80, 48, 72, 48, 112, 32, 120, 64, 80, 64, 96, 48, 144, 72, 96, 64, 160, 48, 168, 80, 96, 88, 184, 64, 168, 80, 128, 96, 208, 72, 160, 96, 144, 112, 232, 64, 240, 120, 144, 128, 192, 80, 264
Offset: 1

Views

Author

N. J. A. Sloane, Nov 02 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A008831.
a(n) is also the number of integers prime to n in the interval [n+1, 5n-1]. [From Washington Bomfim, Oct 10 2009]

Examples

			The three rational numbers of height 1 are 0, 1 and -1.
		

References

  • M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 7.

Crossrefs

Programs

Formula

a(1) = 3; thereafter a(n) = 4*phi(n) = 4*A000010(n).

Extensions

A simpler alternative description added to the name field by Antti Karttunen, Dec 05 2017

A036118 a(n) = 2^n mod 13.

Original entry on oeis.org

1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7
Offset: 0

Views

Author

Keywords

Comments

The sequence is 12-periodic.

References

  • I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

Crossrefs

Cf. A008831.

Programs

  • GAP
    List([0..95],n->PowerMod(2,n,13)); # Muniru A Asiru, Jan 31 2019
  • Magma
    [2^n mod 13: n in [0..100]]; // G. C. Greubel, Oct 16 2018
    
  • Maple
    [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
  • Mathematica
    PowerMod[2, Range[0, 70], 13] (* Wesley Ivan Hurt, Nov 20 2014 *)
  • PARI
    a(n)=2^n%13 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [power_mod(2,n,13) for n in range(0,72)] # Zerinvary Lajos, Nov 03 2009
    

Formula

a(n) = 13/2 + (-5/3 - (2/3)*sqrt(3))*cos(Pi*n/6) + (-1/3 - sqrt(3))*sin(Pi*n/6) - (13/6)*cos(Pi*n/2) - (13/6)*sin(Pi*n/2) + (-5/3 + (2/3)*sqrt(3))*cos(5*Pi*n/6) + (sqrt(3) - 1/3)*sin(5*Pi*n/6). - Richard Choulet, Dec 12 2008
a(n) = a(n-1) - a(n-6) + a(n-7). - R. J. Mathar, Apr 13 2010
G.f.: (1 + x + 2*x^2 + 4*x^3 - 5*x^4 + 3*x^5 + 7*x^6)/ ((1-x) * (x^2+1) * (x^4 - x^2 + 1)). - R. J. Mathar, Apr 13 2010
a(n) = 13 - a(n+6) = a(n+12) for all n in Z. - Michael Somos, Oct 17 2018
Showing 1-2 of 2 results.