cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008859 a(n) = Sum_{k=0..6} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 247, 466, 848, 1486, 2510, 4096, 6476, 9949, 14893, 21778, 31180, 43796, 60460, 82160, 110056, 145499, 190051, 245506, 313912, 397594, 499178, 621616, 768212, 942649, 1149017, 1391842, 1676116, 2007328
Offset: 0

Views

Author

Keywords

Comments

a(n) is the maximal number of regions in 6-space formed by n-1 5-dimensional hypercubes. - Christian Schroeder, Jan 04 2016
a(n) is the number of binary words of length n matching the regular expression 0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, and 1*0*1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..6], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008859 = sum . take 7 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(&+[Binomial(n,k): k in [0..6]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    A008859 := proc(n)
        add(binomial(n,k),k=0..6) ;
    end proc: # R. J. Mathar, Oct 30 2015
  • Mathematica
    Table[Sum[Binomial[n,k],{k,0,6}],{n,0,40}] (* Harvey P. Dale, Jan 16 2012 *)
  • PARI
    a(n)=sum(k=0,6,binomial(n,k)) \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [sum(binomial(n,k) for k in (0..6)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=0..3} binomial(n+1, 2*k). - Len Smiley, Oct 20 2001
O.g.f.: (1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)/(1-x)^7. - R. J. Mathar, Apr 02 2008
a(n) = a(n-1) + A006261(n-1). - Christian Schroeder, Jan 04 2016
a(n) = (n^6 - 9*n^5 + 55*n^4 - 75*n^3 + 304*n^2 + 444*n + 720)/720. - Gerry Martens , May 04 2016
E.g.f.: (720 + 720*x + 360*x^2 + 120*x^3 + 30*x^4 + 6*x^5 + x^6)*exp(x)/6!. - Ilya Gutkovskiy, May 04 2016