A008859 a(n) = Sum_{k=0..6} binomial(n,k).
1, 2, 4, 8, 16, 32, 64, 127, 247, 466, 848, 1486, 2510, 4096, 6476, 9949, 14893, 21778, 31180, 43796, 60460, 82160, 110056, 145499, 190051, 245506, 313912, 397594, 499178, 621616, 768212, 942649, 1149017, 1391842, 1676116, 2007328
Offset: 0
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
List([0..40], n-> Sum([0..6], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
-
Haskell
a008859 = sum . take 7 . a007318_row -- Reinhard Zumkeller, Nov 24 2012
-
Magma
[(&+[Binomial(n,k): k in [0..6]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
-
Maple
A008859 := proc(n) add(binomial(n,k),k=0..6) ; end proc: # R. J. Mathar, Oct 30 2015
-
Mathematica
Table[Sum[Binomial[n,k],{k,0,6}],{n,0,40}] (* Harvey P. Dale, Jan 16 2012 *)
-
PARI
a(n)=sum(k=0,6,binomial(n,k)) \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[sum(binomial(n,k) for k in (0..6)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
Formula
a(n) = Sum_{k=0..3} binomial(n+1, 2*k). - Len Smiley, Oct 20 2001
O.g.f.: (1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)/(1-x)^7. - R. J. Mathar, Apr 02 2008
a(n) = a(n-1) + A006261(n-1). - Christian Schroeder, Jan 04 2016
a(n) = (n^6 - 9*n^5 + 55*n^4 - 75*n^3 + 304*n^2 + 444*n + 720)/720. - Gerry Martens , May 04 2016
E.g.f.: (720 + 720*x + 360*x^2 + 120*x^3 + 30*x^4 + 6*x^5 + x^6)*exp(x)/6!. - Ilya Gutkovskiy, May 04 2016
Comments