cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008863 a(n) = Sum_{k=0..10} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4083, 8100, 15914, 30827, 58651, 109294, 199140, 354522, 616666, 1048576, 1744436, 2842226, 4540386, 7119516, 10970272, 16628809, 24821333, 36519556, 53009102, 75973189, 107594213, 150676186, 208791332
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into eleven or fewer parts. - Geoffrey Critzer, Jan 24 2009
a(n) is the maximal number of regions in 10-space formed by n-1 9-dimensional hypercubes. Also the number of binary words of length n matching the regular expression 0*1*0*1*0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261, A008859, A008860, A008861, A008862 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, 1*0*1*0*1*0*, 0*1*0*1*0*1*0*, 1*0*1*0*1*0*1*0*, 0*1*0*1*0*1*0*1*0* and 1*0*1*0*1*0*1*0*1*0* respectively. - Manfred Scheucher, Jun 23 2023

Examples

			a(11) = 2047 because there are 2^11=2048 compositions of 12 into any size parts but one of the compositions (1+1+...+1=12) has more than eleven parts. - _Geoffrey Critzer_, Jan 24 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..10], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008863 = sum . take 11 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(&+[Binomial(n,k): k in [0..10]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    A008863:=n->add(binomial(n,k), k=0..10): seq(A008863(n), n=0..40); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[Sum[Binomial[n, i], {i, 0, 10}], {n, 0, 40}] (* T. D. Noe, Mar 27 2012 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,2,4,8, 16,32,64,128,256,512,1024}, 40] (* Harvey P. Dale, Apr 25 2012 *)
  • PARI
    a(n)=sum(k=0,10,binomial(n,k)) \\ Charles R Greathouse IV, Apr 07 2016
    
  • Python
    A008863_list, m = [], [1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1]
    for _ in range(10**2):
        A008863_list.append(m[-1])
        for i in range(10):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [sum(binomial(n,k) for k in (0..10)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=0..5} binomial(n+1, 2k), compare A008859.
From Geoffrey Critzer, Jan 24 2009: (Start)
G.f.: (1 - 9*x + 37*x^2 - 91*x^3 + 148*x^4 - 166*x^5 + 130*x^6 - 70*x^7 + 25*x^8 - 5*x^9 + x^10)/(1-x)^11.
a(n) = (n^10 - 35*n^9 + 600*n^8 - 5790*n^7 + 36813*n^6 - 140595*n^5 + 408050*n^4 - 382060*n^3 + 1368936*n^2 + 2342880*n + 3628800)/10!. (End)
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11); a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=64, a(7)=128, a(8)=256, a(9)=512, a(10)=1024. - Harvey P. Dale, Apr 25 2012