A000340
a(0)=1, a(n) = 3*a(n-1) + n + 1.
Original entry on oeis.org
1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0
G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 18.
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See p. 7.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 389
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- László Tóth, On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers, arXiv:2002.06584 [math.NT], 2020. Mentions this sequence. See also Proc. Amer. Math. Soc. 148 (2020), 461-469.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Equals
A156920 second right hand column.
Equals
A142963 second right hand column divided by 2^n.
Equals
A156919 second right hand column divided by 2.
(End)
-
[(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
-
a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)
A000363
Number of permutations of [n] with exactly 2 increasing runs of length at least 2.
Original entry on oeis.org
5, 61, 479, 3111, 18270, 101166, 540242, 2819266, 14494859, 73802835, 373398489, 1881341265, 9453340172, 47417364268, 237571096820, 1189405165908, 5951965440609, 29775517732665, 148927275340835, 744793282001995
Offset: 4
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See p. 7.
- Index entries for linear recurrences with constant coefficients, signature (14,-75,196,-263,174,-45).
The a(n) sequence equals the third left hand column of
A008971.
The a(2*n) sequence equals the third left hand column of
A160486.
(End)
-
[(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16: n in [4..30]]; // Vincenzo Librandi, May 03 2013
-
Table[(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16,{n,4,20}] (* Vaclav Kotesovec, Nov 19 2012 *)
A160486
Triangle of polynomial coefficients related to the o.g.f.s. of the RBS1 polynomials.
Original entry on oeis.org
1, 1, 1, 1, 18, 5, 1, 179, 479, 61, 1, 1636, 18270, 19028, 1385, 1, 14757, 540242, 1949762, 1073517, 50521, 1, 132854, 14494859, 137963364, 241595239, 82112518, 2702765
Offset: 1
The first few rows of the triangle are:
[1]
[1, 1]
[1, 18, 5]
[1, 179, 479, 61]
[1, 1636, 18270, 19028, 1385]
The first few RB(z,1-2*m) polynomials are:
RB(z,-1) = 1
RB(z,-3) = z+1
RB(z,-5) = z^2+18*z+5
RB(z,-7) = z^3+179*z^2+479*z+61
The first few GFRBS1(z,1-2*m) are:
GFRBS1(z,-1) = (-1)*(1)/(z-1)
GFRBS1(z,-3) = (-1)*(z+1)/(z-1)^2
GFRBS1(z,-5) = (-1)*(z^2+18*z+5)/(z-1)^3
GFRBS1(z,-7) = (-1)*(z^3+179*z^2+479*z+61)/(z-1)^4
This triangle is a sub-triangle of
A008971.
The first right hand column equals the Euler numbers
A000364.
-
nmax:=15; G := sqrt(1-t)/(sqrt(1-t)*cosh(x*sqrt(1-t))-sinh(x*sqrt(1-t))): Gser := simplify(series(G, x=0, nmax+1)): for m from 0 to nmax do P[m] := sort(expand(m!* coeff(Gser, x, m))) od: nmx := floor(nmax/2); for n from 0 to nmx do for k from 0 to nmx-1 do A(n+1, n+1-k) := coeff(P[2*n], t, n-k) od: od: seq(seq(A(n,m), m=1..n), n=1..nmx);
A000507
Number of permutations of [n] with exactly 3 increasing runs of length at least 2.
Original entry on oeis.org
61, 1385, 19028, 206276, 1949762, 16889786, 137963364, 1081702420, 8236142455, 61386982075, 450403628440, 3266265481144, 23480284103492, 167687984079924, 1191656966048088, 8436830209386360, 59563995267159825, 419628657826253805
Offset: 6
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See p. 7.
- Index entries for linear recurrences with constant coefficients, signature (30, -385, 2776, -12418, 35908, -67818, 82552, -62109, 26190, -4725).
The a(n) sequence equals the fourth left hand column of
A008971.
The a(2*n) sequence equals the fourth left hand column of
A160486.
(End)
-
[(3*7^n-(6*n-9)*5^n+(6*n^2-18*n+3)*3^n-4*n^3+18*n^2-8*n-15)/192: n in [6..30]]; // Vincenzo Librandi, Feb 09 2016
-
t[n_, 0] = 1; t[n_, k_] /; k > n/2 = 0; t[n_, k_] /; k <= n/2 := t[n, k] = (2k+1) t[n-1, k] + (n-2k+1) t[n-1, k-1]; a[n_] := t[n, 3]; Table[a[n], {n, 6, 23}] (* Jean-François Alcover, Feb 09 2016 *)
Definition changed for clarity and for consistency with
A008971, and formula and additional terms added by
Jon E. Schoenfield, Mar 26 2010
A333273
Irregular triangle read by rows: coefficients of q-Eulerian polynomials of Type B.
Original entry on oeis.org
1, 1, 4, 1, 20, 1, 72, 80, 1, 232, 976, 1, 716, 7664, 3904, 1, 2172, 49776, 88640, 1, 6544, 292320, 1217792, 354560, 1, 19664, 1618656, 13201664, 12933376, 1, 59028, 8643872, 124784768, 274820352, 51733504, 1, 177124, 45108256, 1080946304, 4469939456, 2767631360
Offset: 1
Triangle begins:
1;
1, 4;
1, 20;
1, 72, 80;
1, 232, 976;
1, 716, 7664, 3904;
...
Term T(6, 2) corrected (Table 1 in the Han et al. reference has a typo) by
Robert S. Maier, Feb 15 2025
Showing 1-5 of 5 results.
Comments