cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000340 a(0)=1, a(n) = 3*a(n-1) + n + 1.

Original entry on oeis.org

1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Feb 20 2009: (Start)
Second right hand column (n-m=1) of the A156920 triangle.
The generating function of this sequence enabled the analysis of the polynomials A156921 and A156925.
(End)
Partial sums of A003462, and thus the second partial sums of A000244 (3^n). Also column k=2 of A106516. - John Keith, Jan 04 2022

Examples

			G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Johannes W. Meijer, Feb 20 2009: (Start)
Equals A156920 second right hand column.
Equals A142963 second right hand column divided by 2^n.
Equals A156919 second right hand column divided by 2.
(End)
Cf. A014915.
Equals column k=1 of A008971 (shifted). - Jeremy Dover, Jul 11 2021
Cf. A000340, A003462 (first differences), A106516.

Programs

  • Magma
    [(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
  • Maple
    a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
    A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
    RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)

Formula

G.f.: 1/((1-3*x)*(1-x)^2).
a(n) = (3^(n+2) - 2*n - 5)/4.
a(n) = Sum_{k=0..n+1} (n-k+1)*3^k = Sum_{k=0..n+1} k*3^(n-k+1). - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+2)*2^k. - Paul Barry, Jul 30 2004
a(-1)=0, a(0)=1, a(n) = 4*a(n-1) - 3*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Johannes W. Meijer, Feb 20 2009
a(-2 - n) = 3^-n * A014915(n). - Michael Somos, May 28 2014
E.g.f.: exp(x)*(9*exp(2*x) - 2*x - 5)/4. - Stefano Spezia, Nov 09 2024

A000363 Number of permutations of [n] with exactly 2 increasing runs of length at least 2.

Original entry on oeis.org

5, 61, 479, 3111, 18270, 101166, 540242, 2819266, 14494859, 73802835, 373398489, 1881341265, 9453340172, 47417364268, 237571096820, 1189405165908, 5951965440609, 29775517732665, 148927275340835, 744793282001995
Offset: 4

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Contribution from Johannes W. Meijer, May 24 2009: (Start)
The a(n) sequence equals the third left hand column of A008971.
The a(2*n) sequence equals the third left hand column of A160486.
(End)

Programs

  • Magma
    [(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16: n in [4..30]]; // Vincenzo Librandi, May 03 2013
  • Mathematica
    Table[(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16,{n,4,20}] (* Vaclav Kotesovec, Nov 19 2012 *)

Formula

From Vaclav Kotesovec, Nov 19 2012: (Start)
a(n) = (5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16.
G.f.: -x^4*(9*x-5)/((x-1)^3*(3*x-1)^2*(5*x-1)). (End)
E.g.f.: exp(x)*(exp(4*x) + exp(2*x)*(1 - 6*x) - 2*(1 - x^2))/16. - Stefano Spezia, Nov 09 2024

Extensions

More terms and better definition from Jon E. Schoenfield, Mar 25 2010

A160486 Triangle of polynomial coefficients related to the o.g.f.s. of the RBS1 polynomials.

Original entry on oeis.org

1, 1, 1, 1, 18, 5, 1, 179, 479, 61, 1, 1636, 18270, 19028, 1385, 1, 14757, 540242, 1949762, 1073517, 50521, 1, 132854, 14494859, 137963364, 241595239, 82112518, 2702765
Offset: 1

Views

Author

Johannes W. Meijer, May 24 2009, Sep 19 2012

Keywords

Comments

As we showed in A160485 the n-th term of the coefficients of matrix row BS1[1-2*m,n] for m = 1 , 2, 3, .. , can be generated with the RBS1(1-2*m,n) polynomials.
We define the o.g.f.s. of these polynomials by GFRBS1(z,1-2*m) = sum(RBS1(1-2*m,n)*z^(n-1), n=1..infinity) for m = 1, 2, 3, .. . The general expression of these o.g.f.s. is GFRBS1(z,1-2*m) = (-1)*RB(z,1-2*m)/(z-1)^m.
The RB(z,1-2*m) polynomials lead to a triangle that is a subtriangle of the 'double triangle' A008971. The even rows of the latter triangle are identical to the rows of our triangle.
The Maple program given below is derived from the one given in A008971.

Examples

			The first few rows of the triangle are:
[1]
[1, 1]
[1, 18, 5]
[1, 179, 479, 61]
[1, 1636, 18270, 19028, 1385]
The first few RB(z,1-2*m) polynomials are:
RB(z,-1) = 1
RB(z,-3) = z+1
RB(z,-5) = z^2+18*z+5
RB(z,-7) = z^3+179*z^2+479*z+61
The first few GFRBS1(z,1-2*m) are:
GFRBS1(z,-1) = (-1)*(1)/(z-1)
GFRBS1(z,-3) = (-1)*(z+1)/(z-1)^2
GFRBS1(z,-5) = (-1)*(z^2+18*z+5)/(z-1)^3
GFRBS1(z,-7) = (-1)*(z^3+179*z^2+479*z+61)/(z-1)^4
		

Crossrefs

Cf. A160480 and A160485.
The row sums equal A010050.
This triangle is a sub-triangle of A008971.
A000340(2*n-2), A000363(2*n+2) and A000507(2*n+4) equal the second, third and fourth left hand columns.
The first right hand column equals the Euler numbers A000364.

Programs

  • Maple
    nmax:=15; G := sqrt(1-t)/(sqrt(1-t)*cosh(x*sqrt(1-t))-sinh(x*sqrt(1-t))): Gser := simplify(series(G, x=0, nmax+1)): for m from 0 to nmax do P[m] := sort(expand(m!* coeff(Gser, x, m))) od: nmx := floor(nmax/2); for n from 0 to nmx do for k from 0 to nmx-1 do A(n+1, n+1-k) := coeff(P[2*n], t, n-k) od: od: seq(seq(A(n,m), m=1..n), n=1..nmx);

A000507 Number of permutations of [n] with exactly 3 increasing runs of length at least 2.

Original entry on oeis.org

61, 1385, 19028, 206276, 1949762, 16889786, 137963364, 1081702420, 8236142455, 61386982075, 450403628440, 3266265481144, 23480284103492, 167687984079924, 1191656966048088, 8436830209386360, 59563995267159825, 419628657826253805
Offset: 6

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Johannes W. Meijer, May 24 2009: (Start)
The a(n) sequence equals the fourth left hand column of A008971.
The a(2*n) sequence equals the fourth left hand column of A160486.
(End)

Programs

  • Magma
    [(3*7^n-(6*n-9)*5^n+(6*n^2-18*n+3)*3^n-4*n^3+18*n^2-8*n-15)/192: n in [6..30]]; // Vincenzo Librandi, Feb 09 2016
  • Mathematica
    t[n_, 0] = 1; t[n_, k_] /; k > n/2 = 0; t[n_, k_] /; k <= n/2 := t[n, k] = (2k+1) t[n-1, k] + (n-2k+1) t[n-1, k-1]; a[n_] := t[n, 3]; Table[a[n], {n, 6, 23}] (* Jean-François Alcover, Feb 09 2016 *)

Formula

a(n) = (3*7^n-(6*n-9)*5^n+(6*n^2-18*n+3)*3^n-4*n^3+18*n^2-8*n-15)/192.
G.f.: x^6*(61 - 445*x + 963*x^2 - 675*x^3)/((1 - 5*x)^2*(1 - x)^4*(1 - 3*x)^3*(1 - 7*x)). - Stefano Spezia, Nov 09 2024

Extensions

Definition changed for clarity and for consistency with A008971, and formula and additional terms added by Jon E. Schoenfield, Mar 26 2010

A333273 Irregular triangle read by rows: coefficients of q-Eulerian polynomials of Type B.

Original entry on oeis.org

1, 1, 4, 1, 20, 1, 72, 80, 1, 232, 976, 1, 716, 7664, 3904, 1, 2172, 49776, 88640, 1, 6544, 292320, 1217792, 354560, 1, 19664, 1618656, 13201664, 12933376, 1, 59028, 8643872, 124784768, 274820352, 51733504, 1, 177124, 45108256, 1080946304, 4469939456, 2767631360
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2020

Keywords

Comments

For Type A see A101280.

Examples

			Triangle begins:
  1;
  1,    4;
  1,   20;
  1,   72,   80;
  1,  232,  976;
  1,  716, 7664, 3904;
  ...
		

Crossrefs

Cf. A101280, A008971. Row sums are A182825.

Formula

T(n, k) = A008971(n, k) * 4^k. [Han et al.] - Andrey Zabolotskiy, Feb 15 2025

Extensions

Term T(6, 2) corrected (Table 1 in the Han et al. reference has a typo) by Robert S. Maier, Feb 15 2025
Rows 7-11 from Andrey Zabolotskiy, Mar 03 2025
Showing 1-5 of 5 results.