A005326 Permanent of "coprime?" matrix.
1, 1, 3, 4, 28, 16, 256, 324, 3600, 3600, 129744, 63504, 3521232, 3459600, 60891840, 91240704, 8048712960, 3554067456, 425476094976, 320265446400, 12474417291264, 16417666704384, 2778580249611264, 1142807773593600, 172593628397420544
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Stephen C. Locke, Table of n, a(n) for n = 1..50 (first 30 terms from Seiichi Manyama)
- D. M. Jackson, The combinatorial interpretation of the Jacobi identity from Lie algebra, J. Combin. Theory, A 23 (1977), 233-256.
- Carl Pomerance, Coprime permutations, arXiv:2203.03085 [math.NT], 2022.
- Ashwin Sah and Mehtaab Sawhney, Enumerating coprime permutations, arXiv:2203.06268 [math.NT], 2022.
Crossrefs
Cf. A009679.
Programs
-
Maple
Jackson2:=proc(n) local m,i,j,M,p,b,s,x; if 0=(n mod 2) then; m := n/2; M := Matrix(m, m, 0); for i from 1 to m do for j from 1 to m do; if 1= igcd(2*i,2*j-1) then M[i,j]:=1; fi; od; od; s := LinearAlgebra[Permanent](M); return s^2; else; m := (n + 1)/2; M := Matrix(m, m, 0); for i from 1 to m-1 do for j from 1 to m do; if 1=igcd(2*i,2*j-1) then M[i,j]:=1; fi; od; od; for j to m do M[m,j] := x[j]; end do; p := LinearAlgebra[Permanent](M); b := [ ]; for j to m do b := [op(b), coeff(p, x[j])]; end do; s := 0; for i from 1 to m do for j from 1 to m do; if 1=igcd(2*i-1,2*j-1) then s:=s+b[i]*b[j]; fi; od; od; fi; return s; end; seq(Jackson2(n), n=1..25); # Stephen C. Locke, Feb 24 2022
-
Mathematica
perm[m_?MatrixQ] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; a[n_] := perm[ Table[ Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* Jean-François Alcover, Nov 15 2011 *) (* or, if version >= 10: *) a[n_] := Permanent[Table[Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* Jean-François Alcover, Jul 25 2017 *)
-
PARI
permRWNb(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; nc=0; in=vectorv(n); x=in; x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1; z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p) for(n=1,26,a=matrix(n,n,i,j,gcd(i,j)==1); print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
Extensions
Corrected by Vladeta Jovovic, Jul 05 2003
More terms from T. D. Noe, Feb 10 2007
a(25) from Alois P. Heinz, Nov 15 2016
Comments