A024255
a(0)=0, a(n) = n*E(2n-1) for n >= 1, where E(n) = A000111(n) are the Euler (or up-down) numbers.
Original entry on oeis.org
0, 1, 4, 48, 1088, 39680, 2122752, 156577792, 15230058496, 1888788086784, 290888851128320, 54466478584365056, 12185086638082228224, 3209979242472703787008, 983522422455215438430208, 346787762817143967622103040, 139423404114002708738732982272
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..100
- Noam D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.
- Noam D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
- Luis Ferroni, Alejandro H. Morales, and Greta Panova, Skew shapes, Ehrhart positivity and beyond, arXiv:2503.16403 [math.CO], 2025. See p. 16.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
-
a := n -> (-1)^n*2^(2*n-1)*(1-2^(2*n))*bernoulli(2*n); # Peter Luschny, Jun 08 2009
-
nn = 30; t = Range[0, nn]! CoefficientList[Series[Tan[x]*x/2, {x, 0, nn}], x]; Take[t, {1, nn, 2}]
Table[(-1)^n 2 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *)
-
from itertools import accumulate, islice, count
def A024255_gen(): # generator of terms
yield from (0,1)
blist = (0,1)
for n in count(2):
yield n*(blist := tuple(accumulate(reversed(tuple(accumulate(reversed(blist),initial=0))),initial=0)))[-1]
A024255_list = list(islice(A024255_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
A009707
Expansion of e.g.f. tan(tan(x)*x) (even powers only).
Original entry on oeis.org
0, 2, 8, 336, 15616, 1450240, 185032704, 33566984192, 7971973332992, 2424984197529600, 915532582868746240, 420569934453637906432, 230845747512083447021568, 149228982402223336708898816
Offset: 0
-
nmax = 20; Table[(CoefficientList[Series[Tan[x*Tan[x]], {x, 0, 2*nmax}], x] * Range[0, 2 nmax]!)[[n]], {n, 1, 2*nmax + 1, 2}] (* Vaclav Kotesovec, Dec 21 2017 *)
A099028
Euler-Seidel matrix T(k,n) with start sequence e.g.f. 2x/(1+e^(2x)), read by antidiagonals.
Original entry on oeis.org
0, 1, 1, 0, -1, -2, -3, -3, -2, 0, 0, 3, 6, 8, 8, 25, 25, 22, 16, 8, 0, 0, -25, -50, -72, -88, -96, -96, -427, -427, -402, -352, -280, -192, -96, 0, 0, 427, 854, 1256, 1608, 1888, 2080, 2176, 2176, 12465, 12465, 12038, 11184, 9928, 8320, 6432, 4352, 2176, 0
Offset: 0
Seidel matrix:
[ 0 1 -2 0 8 0 -96 0 2176 0]
[ 1 -1 -2 8 8 -96 -96 2176 2176 .]
[ 0 -3 6 16 -88 -192 2080 4352 . .]
[ -3 3 22 -72 -280 1888 6432 . . .]
[ 0 25 -50 -352 1608 8320 . . . .]
[ 25 -25 -402 1256 9928 . . . . .]
[ 0 -427 854 11184 . . . . . .]
[ -427 427 12038 . . . . . . .]
[ 0 12465 . . . . . . . .]
[12465 . . . . . . . . .]
-
T[k_, n_] := T[k, n] = If[k == 0, SeriesCoefficient[2x/(1 + E^(2x)), {x, 0, n}] n!, T[k-1, n] + T[k-1, n+1]];
Table[T[k-n, n], {k, 0, 9}, {n, 0, k}] (* Jean-François Alcover, Jun 11 2019 *)
-
def SeidelMatrixA099028(dim):
E = matrix(ZZ, dim)
t = taylor(2*x/(1+exp(2*x)), x, 0, dim + 1)
for k in (0..dim-1):
E[0, k] = factorial(k) * t.coefficient(x, k)
R = [0]
for n in (1..dim-1):
for k in (0..dim-n-1):
E[n, k] = E[n-1, k] + E[n-1, k+1]
R.extend([E[n-k,k] for k in (0..n)])
return R
print(SeidelMatrixA099028(10)) # Peter Luschny, Jul 02 2016
A232933
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping, cyclic wrap-around) occurrences of the consecutive step pattern UDU (U=up, D=down); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 1, 0, 2, 3, 3, 12, 4, 8, 35, 45, 40, 144, 348, 132, 96, 910, 1862, 1316, 952, 5976, 11600, 14808, 5760, 2176, 39942, 100260, 123606, 63360, 35712, 306570, 919270, 1069910, 910650, 343040, 79360, 2698223, 8427243, 11694397, 10673641, 4477440, 1945856
Offset: 0
T(2,1) = 2: 12, 21 (the two U's of UDU overlap).
T(3,0) = 3: 132, 213, 321.
T(3,1) = 3: 123, 231, 312.
T(4,0) = 12: 1243, 1342, 1432, 2134, 2143, 2431, 3124, 3214, 3421, 4213, 4312, 4321.
T(4,1) = 4: 1234, 2341, 3412, 4123.
T(4,2) = 8: 1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 0, 2;
: 3 : 3, 3;
: 4 : 12, 4, 8;
: 5 : 35, 45, 40;
: 6 : 144, 348, 132, 96;
: 7 : 910, 1862, 1316, 952;
: 8 : 5976, 11600, 14808, 5760, 2176;
: 9 : 39942, 100260, 123606, 63360, 35712;
: 10 : 306570, 919270, 1069910, 910650, 343040, 79360;
T(2n+1,n) gives (2n+1) *
A024283(n) for n>0.
-
b:= proc(u, o, t) option remember; `if`(u+o=0,
`if`(t=2, x, 1), expand(
add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o)+
add(b(u-j, o+j-1, `if`(t=2, 3, 1)), j=1..u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))
(`if`(n<2, 1, n* b(0, n-1, 1))):
seq(T(n), n=0..12);
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, If[t == 2, x, 1], Expand[Sum[ b[u + j - 1, o - j, 2]*If[t == 3, x, 1], {j, 1, o}] + Sum[b[u - j, o + j - 1, If[t == 2, 3, 1]], {j, 1, u}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]] [If[n < 2, 1, n*b[0, n - 1, 1]]];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
A009725
Expansion of e.g.f.: tan(x)*(1+x).
Original entry on oeis.org
0, 1, 2, 2, 8, 16, 96, 272, 2176, 7936, 79360, 353792, 4245504, 22368256, 313155584, 1903757312, 30460116992, 209865342976, 3777576173568, 29088885112832, 581777702256640, 4951498053124096, 108932957168730112, 1015423886506852352, 24370173276164456448
Offset: 0
-
With[{nn=30},CoefficientList[Series[Tan[x]*(1+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 29 2020 *)
Definition clarified and prior Mathematica program replaced by
Harvey P. Dale, Oct 29 2020
Original entry on oeis.org
2, 2, 10, 122, 2770, 101042, 5405530, 398721962, 38783024290, 4809759350882, 740742376475050, 138697748786275802, 31029068327114173810, 8174145018586247784722, 2504519282807259730936570, 883087786498046209107365642, 355038783159078578873329579330, 161446598471775796124336494906562
Offset: 0
- G. Almkvist, Many correct digits of Pi, revisited, Amer. Math. Monthly, 104 (1997), 351-353.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
-
a[n_] := (-1)^n 4 Im[PolyLog[-2 n, I]];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Aug 18 2021 *)
A243963
a(n) = n*4^n*(-Z(1-n, 1/4)/2 + Z(1-n, 3/4)/2 - Z(1-n, 1)*(1 - 2^(-n))) for n > 0 and a(0) = 0, where Z(n, c) is the Hurwitz zeta function.
Original entry on oeis.org
0, 0, 2, 3, -8, -25, 96, 427, -2176, -12465, 79360, 555731, -4245504, -35135945, 313155584, 2990414715, -30460116992, -329655706465, 3777576173568, 45692713833379, -581777702256640, -7777794952988025, 108932957168730112, 1595024111042171723, -24370173276164456448
Offset: 0
-
a := n -> `if`(n=0, 0, n*4^n*(-Zeta(0, 1-n, 1/4)/2 + Zeta(0, 1-n, 3/4)/2 + Zeta(1-n)*(2^(-n)-1))): seq(a(n), n=0..24); # Peter Luschny, Jul 21 2020
-
a[0] = 0; a[n_] := -n*SeriesCoefficient[(2*E^x*(1 - E^x))/(1 + E^(2*x)), {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jun 17 2014 *)
A296543
Expansion of e.g.f. tanh(exp(x)-1).
Original entry on oeis.org
0, 1, 1, -1, -11, -33, 61, 1367, 7253, -12561, -580499, -4701497, 4669765, 580325215, 6636339165, 1365901495, -1122870368715, -17289945450289, -31110588453299, 3713822629274023, 74717183313957413, 280555705771423039, -19253195126787261507, -496715617694137066089, -3008746115751273626347
Offset: 0
tanh(exp(x)-1) = x/1! + x^2/2! - x^3/3! - 11*x^4/4! - 33*x^5/5! + 61*x^6/6! + 1367*x^7/7! + ...
-
a:=series(tanh(exp(x)-1),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; CoefficientList[Series[Tanh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Sinh[Exp[x] - 1]/Cosh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[(Exp[x] - 1)/(1 + ContinuedFractionK[(Exp[x] - 1)^2, 2 k - 1, {k, 2, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-8 of 8 results.
Comments