A099029 Main diagonal of array A099028.
-1, 6, -72, 1608, -58080, 3087648, -226762368, 21986726016, -2720113657344, 418117827310080, -78167762731812864, 17465102642354817024, -4595978556276162551808, 1406897783859319396442112
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
x/cos(x) = x + 1/2*x^3 + 5/24*x^5 + 61/720*x^7 + 277/8064*x^9 + ...
seq((2*i+1)!*coeff(series(x/cos(x),x,32),x,2*i+1),i=0..13); A009843 := n -> (-1)^n*(2*n+1)*euler(2*n): # Peter Luschny
c = CoefficientList[Series[1/MittagLefflerE[2,z^2],{z,0,40}],z]; Table[(-1)^n* Factorial[2*n+1]*c[[2*n+1]], {n,0,16}] (* Peter Luschny, Jul 03 2016 *)
a(n)=(-1)^(n+1)*sum(i=0,2*n+1,binomial(2*n+1,i)*bernfrac(i)*4^i)
a(n)=subst(bernpol(2*n+1),'x,1/4)*4^(2*n+1)*(-1)^(n+1) \\ Charles R Greathouse IV, Dec 10 2014
# The objective of this implementation is efficiency. # n -> [a(0), a(1), ..., a(n)] for n > 0. def A009843_list(n): S = [0 for i in range(n+1)] S[0] = 1 for k in range(1, n+1): S[k] = k*S[k-1] for k in range(1, n+1): for j in range(k, n+1): S[j] = (j-k)*S[j-1]+(j-k+1)*S[j] S[k] = (2*k+1)*S[k] return S print(A009843_list(10)) # Peter Luschny, Aug 09 2011
A065619 := n -> `if`(n=1,1,2^(n-1)*abs(euler(n-1,1/2)+euler(n-1,1))*n): # Peter Luschny, Nov 25 2010 # Alternatively (after Alois P. Heinz): b := proc(u, o) option remember; `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end: a := n -> n*b(n-1, 0): seq(a(n), n = 1..24); # Peter Luschny, Oct 27 2017
a[1] = 1; a[n_] := 2^(n-1)*Abs[EulerE[n - 1, 1/2] + EulerE[n - 1, 1]]*n; Array[a, 24] (* Jean-François Alcover, Nov 05 2017, after Peter Luschny *) Table[Re[2 n I^n PolyLog[1 - n, -I]], {n, 1, 19}] (* Peter Luschny, Aug 17 2021 *)
{a(n) = if( n<0, 0 ,n! * polcoeff( x * (tan(x + x * O(x^n)) + 1 / cos(x + x * O(x^n))), n))}
x='x+O('x^66); egf=x*(tan(x)+1/cos(x)); Vec(serlaplace(egf)) /* Joerg Arndt, May 28 2012 */
from itertools import accumulate def A065619(n): if n <= 2: return n blist = (0,1) for _ in range(n-2): blist = tuple(accumulate(reversed(blist),initial=0)) return blist[-1]*n # Chai Wah Wu, Apr 25 2023
# Algorithm of L. Seidel (1877) def A065619_list(n) : # starts with a(0) = 0. R = []; A = {-1:1, 0:0}; k = 0; e = 1 for i in (0..n) : Am = 0; A[k + e] = 0; e = -e for j in (0..i) : Am += A[k]; A[k] = Am; k += e R.append(A[-i//2] if i%2 == 0 else A[i//2]) return R A065619_list(22) # Peter Luschny, May 27 2012
2*x/(1+e^(2*x)) = 0 + x - 2/2!*x^2 + 8/4!*x^4 - 96/6!*x^6 + 2176/8!*x^8 ...
a := n -> 4^n*n*`if`(n=0,0,abs(euler(2*n-1, 0))): # Peter Luschny, Jun 09 2016
nn = 30; t = Range[0, nn]! CoefficientList[Series[x*Tan[x], {x, 0, nn}], x]; Take[t, {1, nn + 1, 2}] (* T. D. Noe, Sep 20 2012 *) Table[(-1)^n 4 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *)
my(x='x+O('x^50)); v=Vec(serlaplace(x*tan(x))); concat([0], vector(#v\2,n,v[2*n-1])) \\ G. C. Greubel, Feb 12 2018
Comments