cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A002111 Glaisher's G numbers.

Original entry on oeis.org

1, 5, 49, 809, 20317, 722813, 34607305, 2145998417, 167317266613, 16020403322021, 1848020950359841, 252778977216700025, 40453941942593304589, 7488583061542051450829, 1587688770629724715374457, 382218817191632327375004833
Offset: 1

Views

Author

Keywords

Comments

Related to the formula Sum_{k>0} sin(kx)/k^(2n+1)=(-1)^(n+1)/2*x^(2n+1)/(2n+1)! * Sum_{i=0..2n} (2Pi/x)^i*B(i)*C(2n+1,i). - Benoit Cloitre, May 01 2002
Named after the English mathematician and astronomer James Whitbread Lee Glaisher (1848-1928). - Amiram Eldar, Jun 16 2021

Examples

			G.f. = x + 5*x^2 + 49*x^3 + 809*x^4 + 20317*x^5 + 722813*x^6 + 34607305*x^7 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    read transforms; t1 := (3/2)/(1+exp(x)+exp(-x)); series(t1,x,50): t2 := SERIESTOLISTMULT(t1); [seq(n*t2[n],n=1..nops(t5))];
  • Mathematica
    s[n_] := CoefficientList[Series[(1/2)*(Sin[t/2]/Sin[3*(t/2)]), {t, 0, 32}], t][[n + 1]]*n!*(-1)^Floor[n/2]; a[n_] := (-1)^n*(6*n + 3)*s[2*n]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Mar 22 2011, after Michael Somos' formula *)
    a[ n_] := If[ n < 1, 0, (2 n + 1)! SeriesCoefficient[ 3 / (2 + 4 Cos[x]), {x, 0, 2 n}]]; (* Michael Somos, Jun 01 2012 *)
  • PARI
    {a(n) = if( n<1, 0, n*=2; (n+1)! * polcoeff( 3 / (2 + 4 * cos( x + O(x^n))), n))}; /* Michael Somos, Feb 26 2004 */
    
  • PARI
    a(n)=if(n<1,0,-(-1)^n*sum(i=0,2*n,binomial(2*n+1,i)*bernfrac(i)*3^i)) \\ Benoit Cloitre, May 01 2002
    
  • Sage
    def A002111(n):
        return add(add(add(((-1)^(n+1-v)/(j+1))*binomial(2*n+1,k)*binomial(j,v)*(3*v)^k for v in (0..j)) for j in (0..k)) for k in (0..2*n+1))
    [A002111(n) for n in (1..16)]  # Peter Luschny, Jun 03 2013

Formula

To get these numbers, expand the e.g.f. (3/2)/(1+exp(x)+exp(-x)), multiply coefficient of x^n by (n+1)! and take absolute values.
Or expand the e.g.f. (3/2)/(1+2*cos(x)) and multiply coefficient of x^n by (n+1)!. - Herb Conn, Feb 25 2002
a(n) = (2n+1)*I(n), where I(n) is given by A047788/A047789.
a(n) = Sum_{i=0, 2n} B(i)*C(2n+1, i)*3^i where B(i) are the Bernoulli numbers, C(2n, i) the binomial numbers. - Benoit Cloitre, May 01 2002
a(n) = (-1)^n * (6*n + 3) * s(2*n), if n>0, where s(n) are the cubic Bernoulli numbers. - Michael Somos, Feb 26 2004
E.g.f.: 3*x / (2 + 4*cos(x)) = Sum_{n>=0} a(n) * x^(2*n+1) / (2*n+1)!. - Michael Somos, Feb 26 2004
E.g.f.: E(x) = (3/2)/(1+2*cos(x)) - 1/2 = x^2/(3*G(0)+x^2); G(k) = 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step). Let f[n]:=coeftayl(E(x), x=0, n) then: A002111[n]=f[2*n+2]*((2*n+3)!). - Sergei N. Gladkovskii, Jan 14 2012
a(n) = Sum_{k=0..2n+1} Sum_{j=0..k} Sum_{v=0..j} ((-1)^(n-v+1)/(j+1))* binomial(2*n+1,k)*binomial(j,v)*(3*v)^k. - Peter Luschny, Jun 03 2013
a(n) ~ (2*n+1)! * sqrt(3) * (3/(2*Pi))^(2*n+1). - Vaclav Kotesovec, Jul 30 2013
From Peter Bala, Mar 02 2015: (Start)
a(n) = (-1)^(n+1)*3^(2*n+1)*B(2*n+1,1/3), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A009843, A069852, A069994.
Conjecturally, a(n) = the unsigned numerator of B(2*n+1,1/3). Cf. A033470.
Essentially a bisection of |A083007|.
G.f. for signed version of sequence: 1/2 + 1/2*Sum_{n >= 0} { 1/(n+1) * Sum_{k = 0..n} (-1)^(k+1)*binomial(n,k)/( (1 - (3*k + 1)*x)*(1 - (3*k + 2)*x) ) } = x^2 - 5*x^4 + 49*x^6 - .... (End)

A083008 a(n) = Sum_{k=0..n-1} 4^k*B(k)*C(n,k) where B(k) is the k-th Bernoulli number and C(n,k) = binomial(n,k).

Original entry on oeis.org

0, 1, -3, 3, 9, -25, -99, 427, 2193, -12465, -79515, 555731, 4247577, -35135945, -313193811, 2990414715, 30461046561, -329655706465, -3777604994187, 45692713833379, 581778811909545, -7777794952988025, -108933009112011843, 1595024111042171723, 24370176181315498929
Offset: 0

Views

Author

Benoit Cloitre, May 31 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Range[0, 15]! CoefficientList[ Series[ 4x/(1 + Exp[x] + Exp[ 2x] + Exp[ 3x]), {x, 0, 15}], x] (* Robert G. Wilson v, Oct 26 2012 *)
    Table[Sum[4^k*BernoulliB[k] Binomial[n, k], {k, 0, n - 1}], {n, 0, 24}] (* Michael De Vlieger, Sep 28 2016 *)
  • PARI
    a(n)=sum(k=0,n-1,4^k*binomial(n,k)*bernfrac(k))

Formula

E.g.f.: 4*x/(1+exp(x)+exp(2*x)+exp(3*x)). - Ira M. Gessel, Feb 23 2012
a(n) ~ n! * (cos(n*Pi/2)-sin(n*Pi/2)) * 2^(n+1) / Pi^n. - Vaclav Kotesovec, Mar 02 2014

Extensions

Offset changed to 0 by Seiichi Manyama, Sep 28 2016

A245244 Triangle of coefficients of the Pbar polynomials, read by rows.

Original entry on oeis.org

1, -3, 4, 25, -56, 32, -427, 1228, -1184, 384, 12465, -41840, 52416, -29184, 6144, -555731, 2079892, -3076288, 2258688, -829440, 122880, 35135945, -142843304, 237829600, -208562688, 102279168, -26787840, 2949120, -2990414715, 12987478876, -23672564832, 23581133952, -13947525120, 4929576960, -970260480
Offset: 0

Views

Author

Richard P. Brent, Jul 14 2014

Keywords

Comments

Pbar(r,n) is a polynomial of degree r defined by the recurrence
Pbar(r+1,n) = (2*n-1)^2 * Pbar(r,n) - 4*(n-1)^2 * Pbar(r,n-1)
with initial condition Pbar(0,n) = 1.

Examples

			Pbar(1,n) = 4*n-3, Pbar(2,n) = 32*n^2 - 56*n + 25.
Triangle begins:
1,
-3, 4,
25, -56, 32,
-427, 1228, -1184, 384,
12465, -41840, 52416, -29184, 6144,
...
From _Peter Bala_, Jan 22 2018: (Start)
The polynomials Pbar(r,n) as hypergeometric series:
r = 0: n*Pbar(0,n) = n = 1 + 3*(n-1)/(n+1) + 5*(n-1)*(n-2)/((n+1)*(n+2)) + 7*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 1/2.
r = 1: n*Pbar(1,n) = n*(4*n - 3) = 1 + 3^3*(n-1)/(n+1) + 5^3*(n-1)*(n-2)/((n+1)*(n+2)) + 7^3*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 3/2.
r = 2: n*Pbar(2,n) = n*(32*n^2 - 56*n + 25) = 1 + 3^5*(n-1)/(n+1) + 5^5*(n-1)*(n-2)/((n+1)*(n+2)) + 7^5*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 5/2.
The above identities when r = 0 and r = 1 were found by Ramanujan. See Example 5 and Example 13 in Chapter 10 of Berndt. (End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 20 and p. 23.

Crossrefs

(-1)^r Pbar(r,0) is sequence A009843. The leading coefficient of Pbar(r,n) is sequence A047053. Cf. also A036970, A083061, A160485 for analogous moments of Bernoulli random walks.

Programs

  • PARI
    N=10; P=vector(N+2); P[1]=1;
    Pbar(r)=P[r+1];
    for (r=0, N, P[r+2] = (2*n-1)^2 * Pbar(r) - 4*(n-1)^2 * subst(Pbar(r),n,n-1) );
    seq=[];  for(r=1,N, seq=concat(seq, Vecrev(P[r])); );  seq
    \\ Joerg Arndt, Jan 27 2015

Formula

In terms of Dumont-Foata polynomials F(r,x,y,z),
Pbar(r,n) = (-4)^r F(r+1,1/2-n,1/2,1/2).
In terms of odd absolute moments of a symmetric Bernoulli random walk with an odd number of steps,
n*C(2*n,n)*Pbar(r,n) = Sum_{k} C(2*n-1,k) * |2*n-1-2*k|^(2*r+1).
In terms of the Pochhammer symbol or ascending factorial (x)_k,
Pbar(r,n) = Sum_{1 <= j <= k <= r+1} (-1)^(j+1)*(1-n)_{k-1}*(2j-1)^(2r+1)/((k-j)!(k)_j).
n*Pbar(r,n) = 1 + 3^(2*r+1)*(n-1)/(n+1) + 5^(2*r+1)*(n-1)*(n-2)/((n+1)*(n+2)) + 7^(2*r+1)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... = Sum_{k = 0..n-1} binomial(n-1,k)/binomial(n+k,k)*(2*k + 1)^(2*r+1); this follows easily from the above recurrence. Examples are given below. - Peter Bala, Jan 22 2018

Extensions

More terms from Joerg Arndt, Jan 27 2015

A104033 Triangle, read by rows, equal to the matrix inverse of triangle A103327, where A103327(n,k) = binomial(2*n+1,2*k+1).

Original entry on oeis.org

1, -3, 1, 25, -10, 1, -427, 175, -21, 1, 12465, -5124, 630, -36, 1, -555731, 228525, -28182, 1650, -55, 1, 35135945, -14449006, 1782495, -104676, 3575, -78, 1, -2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1, 329655706465, -135565467080, 16724709820, -982532408
Offset: 0

Views

Author

Paul D. Hanna, Feb 28 2005

Keywords

Comments

Column 0 equals signed A009843 (expansion of x/cosh(x)). Row sums form signed A000182 (expansion of tanh(x)).
The matrix logarithm is L(n,k) = -(-1)^(n-k)*A000182(n-k)*A103327(n,k), where A000182 = tangent numbers.
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... so that 1/E(y) = 1 - 3*y/3! + 25*y^2/5! - 427*y^3/7! + .... Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013

Examples

			Rows begin:
1;
-3, 1;
25, -10, 1;
-427, 175, -21, 1;
12465, -5124, 630, -36, 1;
-555731 ,228525, -28182, 1650, -55, 1;
35135945, -14449006, 1782495, -104676, 3575, -78, 1;
-2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1;
329655706465, -135565467080, 16724709820, -982532408, 33669350, -754936, 11900, -136, 1; ...
From _Peter Bala_, Aug 06 2013: (Start)
The real zeros of the row polynomials R(n,x) seem to converge to the even squares as n increases.
Polynomial |        Real zeros to 6 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x)     | 3.999986
R(10,x)    | 4.000000, 15.999978
R(15,x)    | 4.000000, 16.000000, 35.999992, 64.414273, 76.998346
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
		

Crossrefs

Programs

  • PARI
    {T(n,k) = if(n=j, binomial(2*m-1,2*j-1))))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = binomial(2*n+1,2*k+1) * polcoeff(1/cosh(x+x*O(x^(2*n))), 2*n-2*k) * (2*n-2*k)!}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))

Formula

Column k: Sum_{j=0..n} C(2*n+1, 2*j+1) * T(j, k) = 0 (n>k), or 1 (n=k).
Row n: Sum_{j=0..n} T(n, j) * C(2*j+1, 2*k+1) = 0 (k
Sum_{k=0..n} T(n, k) * 4^k = 1 for n >= 0.
T(n, k) = (-1)^(n-k)*A000364(n-k)*A103327(n, k), where A000364 = Euler numbers.
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = A002084(n). - Philippe Deléham, Aug 27 2005
From Peter Bala, Aug 06 2013: (Start)
Generating function: 1/sqrt(x)*sinh(sqrt(x)*t)/cosh(t) = t + (-3 + x)*t^3/3! + (25 - 10*x + x^2)*t^5/5! + ....
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(2*n+1,2*k+1)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary nonzero complex x we have
lim_{n -> inf} R(n,x^2)/R(n,0) = (1/(Pi/2*x))*sin(Pi/2*x).
A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,x) seem to converge to the even squares 4, 16, 36, ... as n increases. Some numerical examples are given below. Cf. A055133, A086646 and A103364.
If p = 2*n + 1 is a prime then all the entries in row n are divisible by p, apart from T(n,n) = 1. Thus the row sum is congruent to 1 modulo p.
Row sums R(n,1) = (-1)^n*A000182(n+1).
R(n,4) = 1; R(n,16) = (1/2)*( 3^(2*n+1) - 1 ) = A096053(n);
R(n,36) = (1/3)*( 5^(2*n+1) - 3^(2*n+1) + 1 );
R(n,64) = (1/4)*( 7^(2*n+1) - 5^(2*n+1) + 3^(2*n+1) - 1 ). (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007

A160144 Numerator of (2*n+1)/(2^(2*n+1)-1).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 3, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 9, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 15, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127
Offset: 0

Author

Peter Luschny, May 03 2009

Keywords

Comments

This first differs from A005408 (the odd numbers 2n+1) at a(10). The sequence of differences is A160145. This explains the similarity of A009843 (expansion of x/cos(x)) and A160143. A156769 describes a similar companion to A036279 (expansion of tan(x)).

Crossrefs

Programs

  • Magma
    [Numerator((2*n+1)/(2^(2*n+1)-1)): n in [0..70]]; // Vincenzo Librandi, Apr 25 2018
  • Maple
    seq(numer((2*n+1)/(4^(2*n+1)-2^(2*n+1))),n=0..32);
    seq(numer((2*n+1)/(2^(2*n+1)-1)),n=0..50); # Altug Alkan, Apr 21 2018
  • Mathematica
    Array[Numerator[(2 # + 1)/(2^(2 # + 1) - 1)] &, 64, 0] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    vector(80,n, n--; numerator((2*n+1)/(4^(2*n+1)-2^(2*n+1)))) \\ Michel Marcus, Jan 31 2015
    
  • PARI
    forstep(k=1, 1e3, 2, print1(numerator(k/(2^k-1)), ", ")); \\ Altug Alkan, Apr 21 2018
    

Extensions

More terms from Michel Marcus, Jan 31 2015
Name simplified by Altug Alkan, Apr 21 2018
Further edited by N. J. A. Sloane, Apr 24 2018

A069852 a(n) = Sum_{i=0..2n} B(i)*C(2n+1,i)*5^i where B(i) are the Bernoulli numbers, C(2n,i) the binomial numbers.

Original entry on oeis.org

6, -74, 1946, -88434, 6154786, -607884394, 80834386026, -13923204233954, 3015393801263666, -801997872697905114, 256982712667627683706, -97641716941862894337874, 43406301788286350509870146, -22319737637152541506923644234
Offset: 1

Author

Benoit Cloitre, May 01 2002

Keywords

Comments

Related to those formulas derived from Bernoulli polynomials: Sum_{k>0} sin(k*x)/k^(2n+1) = (-1)^(n+1)/2*x^(2n+1)/(2n+1)!*Sum_{i=0..2n}(2Pi/x)^i*B(i)*C(2n+1,i).

Crossrefs

Programs

  • Maple
    seq(5^(2*n+1)*bernoulli(2*n+1,1/5),n=1..14); # (after Peter Bala) Peter Luschny, Mar 08 2015
  • Mathematica
    Table[5^(2n+1) BernoulliB[2n+1, 1/5], {n, 1, 14}] (* Jean-François Alcover, Jun 03 2019, from Maple *)
  • PARI
    for(n=1,25,print1(sum(i=0,2*n,binomial(2*n+1,i)*bernfrac(i)*5^i),","))

Formula

From Peter Bala, Mar 02 2015: (Start)
a(n) = 5^(2*n + 1)*B(2*n + 1,1/5), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A009843 and A069994.
Conjecturally, a(n) = the signed numerator of B(2*n + 1,1/5).
G.f.: t/2*( 3 - 5*sinh(3*t/2)/sinh(5*t/2) ) = 6*t^3/3! - 74*t^5/5! + 1946*t^7/7! - ....
G.f. for signed version of sequence: 3/2 + 3/2*Sum_{n >= 0} { 1/(n+1) * Sum_{k = 0..n} (-1)^(k+1)*binomial(n,k)/( (1 - (5*k + 1)*x)*(1 - (5*k + 4)*x) ) } = 6*x^2 - 74*x^4 + 1946*x^6 + .... (End)

A099028 Euler-Seidel matrix T(k,n) with start sequence e.g.f. 2x/(1+e^(2x)), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 0, -1, -2, -3, -3, -2, 0, 0, 3, 6, 8, 8, 25, 25, 22, 16, 8, 0, 0, -25, -50, -72, -88, -96, -96, -427, -427, -402, -352, -280, -192, -96, 0, 0, 427, 854, 1256, 1608, 1888, 2080, 2176, 2176, 12465, 12465, 12038, 11184, 9928, 8320, 6432, 4352, 2176, 0
Offset: 0

Author

Ralf Stephan, Sep 27 2004

Keywords

Comments

In an Euler-Seidel matrix, the rows are consecutive pairwise sums and the columns consecutive differences.

Examples

			Seidel matrix:
[    0     1    -2     0     8     0   -96     0  2176     0]
[    1    -1    -2     8     8   -96   -96  2176  2176     .]
[    0    -3     6    16   -88  -192  2080  4352     .     .]
[   -3     3    22   -72  -280  1888  6432     .     .     .]
[    0    25   -50  -352  1608  8320     .     .     .     .]
[   25   -25  -402  1256  9928     .     .     .     .     .]
[    0  -427   854 11184     .     .     .     .     .     .]
[ -427   427 12038     .     .     .     .     .     .     .]
[    0 12465     .     .     .     .     .     .     .     .]
[12465     .     .     .     .     .     .     .     .     .]
		

Crossrefs

First column (odd part) is A009843, main diagonal is in A099029. Antidiagonal sums are in A065619. Cf. A009752.

Programs

  • Mathematica
    T[k_, n_] := T[k, n] = If[k == 0, SeriesCoefficient[2x/(1 + E^(2x)), {x, 0, n}] n!, T[k-1, n] + T[k-1, n+1]];
    Table[T[k-n, n], {k, 0, 9}, {n, 0, k}] (* Jean-François Alcover, Jun 11 2019 *)
  • Sage
    def SeidelMatrixA099028(dim):
        E = matrix(ZZ, dim)
        t = taylor(2*x/(1+exp(2*x)), x, 0, dim + 1)
        for k in (0..dim-1):
            E[0, k] = factorial(k) * t.coefficient(x, k)
        R = [0]
        for n in (1..dim-1):
            for k in (0..dim-n-1):
                E[n, k] = E[n-1, k] + E[n-1, k+1]
            R.extend([E[n-k,k] for k in (0..n)])
        return R
    print(SeidelMatrixA099028(10)) # Peter Luschny, Jul 02 2016

Formula

Recurrence: T(k, n) = T(k-1, n) + T(k-1, n+1).

A160145 a(n) = the odd number 2n+1 minus the numerator of (2n+1)/(2^(2n+1)-1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 150
Offset: 0

Author

Peter Luschny, May 03 2009

Keywords

Comments

Explains the similarity of the sequences A009843 and A160143. (Cf. also the pair A036279 and A156769.) The first nonzero values occur at n = 10, 31, 52 and 73.
Previous name was: Odd numbers 2n+1 minus the numerators of (2n+1)/(4^(2n+1)-2^(2n+1)), (A005408 - A160144). - Altug Alkan, Apr 21 2018

Crossrefs

Programs

  • Maple
    seq((2*n+1)-numer((2*n+1)/(4^(2*n+1)-2^(2*n+1))),n=0..77);
    seq((2*n+1)-numer((2*n+1)/(2^(2*n+1)-1)),n=0..100); # Altug Alkan, Apr 21 2018
  • Mathematica
    Array[# - Numerator[#/(2^# - 1)] &[2 # + 1] &, 78, 0] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    forstep(k=1, 1e2, 2, print1(k - numerator(k/(2^k-1)), ", ")); \\ Altug Alkan, Apr 21 2018

Formula

a(n) = A005408(n) - A160144(n).

Extensions

Name simplified by Altug Alkan, Apr 21 2018

A069994 a(n) = Sum_{i=0..2n} B(i)*C(2n+1,i)*6^i where B(i) are the Bernoulli numbers, C(2n,i) the binomial coefficients.

Original entry on oeis.org

-2, 10, -170, 6370, -415826, 41649850, -5922729722, 1134081384850, -281284596509858, 87722769712529770, -33597252908389628234, 15502327024398065811010, -8481855507605264686660850, 5429636257086663655134162970
Offset: 1

Author

Benoit Cloitre, May 01 2002

Keywords

Comments

Related to those formulas derived from Bernoulli polynomials: Sum_{k>0} sin(k*x)/k^(2n+1) = (-1)^(n+1)/2*x^(2n+1)/(2n+1)!*Sum_{i=0..2n} (2Pi/x)^i*B(i)*C(2n+1,i).

Crossrefs

Programs

  • Maple
    seq(6^(2*n-1)*bernoulli(2*n-1,1/6),n=1..14); # (after Peter Bala) Peter Luschny, Mar 08 2015
  • PARI
    for(n=1,25,print1(sum(i=0,2*n,binomial(2*n+1,i)*bernfrac(i)*6^i),","))

Formula

From Peter Bala, Mar 02 2015: (Start)
a(n) = 6^(2*n - 1)*B(2*n - 1,1/6), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A009843, A069852.
Conjecturally, a(n) = 2 * the unsigned numerator of B(2*n - 1,1/6). If true then this sequence is a bisection of 2*A158073.
G.f.: -3*t*sinh(2*t)/sinh(3*t) = -2*t + 10*t^3/3! - 170*t^5/5! + ....
G.f.: Sum_{n >= 0} { 2/(n+1) * Sum_{k = 0..n} (-1)^(k+1)*binomial(n,k)/( (1 - (6*k + 1)*x)*(1 - (6*k + 5)*x) ) } = -2 + 10*x^2 - 170*x^4 + 6370*x^6 - ....
(End)

A160143 a(n) = Numerator((-1)^n*Euler(2*n)*(2*n+1)/(4^(2*n+1)-2^(2*n+1))), where Euler(n) = A122045(n).

Original entry on oeis.org

1, 3, 25, 427, 12465, 555731, 35135945, 2990414715, 329655706465, 45692713833379, 1111113564712575, 1595024111042171723, 387863354088927172625, 110350957750914345093747
Offset: 0

Author

Peter Luschny, May 03 2009

Keywords

Comments

Resembles the coefficients of the series for x/cos(x).
The first difference with sequence A009843 (expansion of x/cos(x)) occurs at a(10). An explanation can be found in the similarity of the numerators of (2*n+1)/(2^(2*n+1)-1) and the odd numbers 2n+1 (cf. A160144).
Similarly, A156769 resembles A036279 (from the expansion of tan(x)).

Programs

  • Maple
    a := n -> (-1)^iquo(n,2)*euler(n)*(n+1)/(4^(n+1)-2^(n+1));
    seq(numer(a(2*n)),n=0..13);
Showing 1-10 of 26 results. Next