cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A014641 Odd octagonal numbers: (2n+1)*(6n+1).

Original entry on oeis.org

1, 21, 65, 133, 225, 341, 481, 645, 833, 1045, 1281, 1541, 1825, 2133, 2465, 2821, 3201, 3605, 4033, 4485, 4961, 5461, 5985, 6533, 7105, 7701, 8321, 8965, 9633, 10325, 11041, 11781, 12545, 13333, 14145, 14981, 15841, 16725, 17633, 18565, 19521, 20501, 21505
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = a(n-1) + 24*n - 4, with n > 0, a(0)=1. - Vincenzo Librandi, Dec 28 2010
G.f.: (1 + 18*x + 5*x^2)/(1 - 3*x + 3*x^2 - x^3). - Colin Barker, Jan 06 2012
a(n) = A289873(6*n+2). - Hugo Pfoertner, Jul 15 2017
From Peter Bala, Jan 22 2018: (Start)
This is the polynomial Qbar(2,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials.
a(n) = (1/4^n) * Sum_{k = 0..n} (2*k + 1)^4*binomial(2*n + 1, n - k).
a(n-1) = (2/4^n) * binomial(2*n,n) * ( 1 + 3^4*(n - 1)/(n + 1) + 5^4*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*log(3))/8.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + sqrt(3)*log(2+sqrt(3))/4. (End)
E.g.f.: exp(x)*(1 + 20*x + 12*x^2). - Stefano Spezia, Apr 16 2022
a(n) = A016754(n) + 4*A014105(n). - Leo Tavares, May 20 2022

Extensions

More terms from Patrick De Geest
Better description from N. J. A. Sloane

A160485 Triangle of the RBS1 polynomial coefficients.

Original entry on oeis.org

1, 1, -2, 1, -8, 12, 1, -2, 60, -120, 1, -128, -168, 0, 1680, 1, 2638, 7320, -5040, -25200, -30240, 1, -98408, -300828, 52800, 1053360, 1330560, 665280, 1, 5307118, 17914260, 2522520, -56456400, -90810720, -60540480, -17297280
Offset: 1

Views

Author

Johannes W. Meijer, May 24 2009, Jul 06 2009, Sep 19 2012

Keywords

Comments

In A160480 we defined the BS1 matrix by BS1[2*m-1,n=1] = 2*beta(2*m) and the recurrence relation BS1 [2*m-1,n] = (2*n-3)/(2*n-2)*(BS1[2*m-1,n-1]- BS1[2*m-3,n-1]/(2*n-3)^2), for positive and negative values of m and n= 1, 2, .. . As usual beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). It is well-known that BS1[1-2*m,n=1] = euler(2*m-2) for m = 1, 2, .., with euler(2*m-2) the Euler numbers A000364. These values together with the recurrence relation lead to BS1[ -1,n] = 1 for n = 1, 2, .. .
We discovered that the n-th term of the row coefficients BS1[1-2*m,n] for m = 1, 2, .., can be generated with the rather simple polynomials RBS1(1-2*m,n). Our discovery was enabled by the recurrence relation for the RBS1(1-2*m,n) polynomials which we derived from the recurrence relation for the BS[2*m-1,n] coefficients and the fact that RBS1(-1,n) = 1.
The RBS1 polynomials and the polynomials defined by sequence A083061 are related by a shift of +-1/2 and scaling by a power of 2 (see arXiv link). - Richard P. Brent, Jul 15 2014

Examples

			The first few rows of the triangle are:
[1]
[1, -2]
[1, -8, 12]
[1, -2, 60, -120]
[1, -128, -168, 0, 1680]
The first few RBS1(1-2*m,n) polynomials are:
RBS1(-1,n) = 1
RBS1(-3,n) = 1 - 2*n
RBS1(-5,n) = 1 - 8*n + 12*n^2
RBS1(-7,n) = 1 - 2*n + 60*n^2 - 120*n^3
From _Peter Bala_, Jan 22 2019: (Start)
Qbar(r,n) = binomial(2*n+2,n+1)/(2^(2*n+1)) * Sum_{k = 0..n} binomial(n,k)/binomial(n+k+1,k)*(2*k + 1)^(2*r):
Case r = 2: Qbar(2,n) = binomial(2*n+2,n+1)/2^(2*n+1) * ( 1 + 3^4*n/(n+2) + 5^4*n*(n-1)/((n+2)*(n+3)) + 7^4*n*(n-1)*(n-2)/((n+2)*(n+3)*(n+4)) + ... ) = 12*n^2 + 8*n + 1, valid for n a nonnegative integer (when the series terminates). The identity is also valid for complex n with real part greater than 1 (provided the factor binomial(2*n,n) is replaced with the appropriate expression involving the gamma function).
Case r = 3: Qbar(3,n) = binomial(2*n+2,n+1)/(2^(2*n+1)) * ( 1 + 3^6*n/(n+2) + 5^6*n*(n-1)/((n+2)*(n+3)) + 7^6*n*(n-1)*(n-2)/((n+2)*(n+3)*(n+4)) + ... ) = 120*n^3 + 60*n^2 + 2*n + 1, valid for n a nonnegative integer. The identity is also valid for complex n with real part greater than 2.
Note, the case r = 0 is equivalent to the identity 1 = binomial(2*n,n)/2^(2*n-1) * ( 1 + (n-1)/(n+1) + (n-1)*(n-2)/((n+1)*(n+2)) + (n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... ), which is valid for complex n with real part greater than 0. This identity was found by Ramanujan. See Example 6, Chapter 10 in Berndt. (End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 21.

Crossrefs

A160480 is the Beta triangle.
A009389(2*n) equals the second left hand column divided by 2.
A001813 equals the first right hand column.
The absolute values of the row sums equal the Euler numbers A000364.

Programs

  • Maple
    nmax := 8; mmax := nmax: A(1, 1) := 1: RBS1(n, 2) := (2*n-1)^2*1-(2*n)*(2*n-1)*1: for m from 3 to mmax do for k from 0 to m-1 do A(m-1, k+1) := coeff(RBS1(n, m-1), n, k) od; RBS1(n+1, m-1) := 0: for k from 0 to m-1 do RBS1(n+1, m-1) := RBS1(n+1, m-1) + A(m-1, k+1)*(n+1)^k od: RBS1(n, m) := (2*n-1)^2*RBS1(n, m-1)-(2*n)*(2*n-1) * RBS1(n+1, m-1) od: for k from 0 to nmax-1 do A(nmax, k+1) := coeff(RBS1(n, nmax), n, k) od: seq(seq(A(n, m), m=1..n), n=1..nmax);

Formula

RBS1(1-2*m,n) = (2*n-1)^2*RBS1(3-2*m,n)-(2*n)*(2*n-1)*RBS1(3-2*m,n+1) for m = 2, 3, .., with RBS1(-1,n) =1 for n = 1, 2, .. .
From Peter Bala, Jan 22 2019: (Start)
The row polynomials RBS1 of the triangle are related to the polynomials Qbar(r,n), r = 0,1,2,..., introduced by Brent by Qbar(r,n) = RBS1(-2*r-1,-n).
Recurrence: Qbar(r+1,n) = (2*n + 1)^2*Qbar(r,n) - 2*n(2*n + 1)*Qbar(r,n-1) with Qbar(0,n) = 1 (Brent, equation 19, p.7).
Qbar(r,n) = binomial(2*n + 2,n + 1)/(2^(2*n + 1)) * Sum_{k = 0..n} binomial(n,k)/binomial(n + k + 1,k)*(2*k + 1)^(2*r); this follows easily from the above recurrence. Two examples are given below.
Qbar(r,n) = 1/4^n * Sum_{k = 0..n} binomial(2*n + 1,n - k)*(2*k + 1)^(2*r) For related polynomial sequences see A036970, A083061 and A245244. (End)

A272126 a(n) = 120*n^3 + 60*n^2 + 2*n + 1.

Original entry on oeis.org

1, 183, 1205, 3787, 8649, 16511, 28093, 44115, 65297, 92359, 126021, 167003, 216025, 273807, 341069, 418531, 506913, 606935, 719317, 844779, 984041, 1137823, 1306845, 1491827, 1693489, 1912551, 2149733, 2405755, 2681337, 2977199, 3294061, 3632643, 3993665
Offset: 0

Views

Author

Vincenzo Librandi, Apr 25 2016

Keywords

Comments

This is the polynomial Qbar(3,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials. - Peter Bala, Jan 22 2019

Crossrefs

Programs

  • Magma
    [120*n^3 + 60*n^2 + 2*n + 1: n in [0..50]];
    
  • Mathematica
    Table[120 n^3 + 60 n^2 + 2 n + 1, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{1,183,1205,3787},40] (* Harvey P. Dale, Nov 08 2020 *)
  • PARI
    a(n) = 120*n^3 + 60*n^2 + 2*n + 1; \\ Altug Alkan, Apr 30 2016

Formula

O.g.f.: (1 + 179*x + 479*x^2 + 61*x^3)/(1-x)^4.
E.g.f.: (1 + 182*x + 420*x^2 + 120*x^3)*exp(x).
a(n) = (2*n+1)*(60*n^2+1).
a(n) = (2*n+1) * A158673(n).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
See page 7 in Brent's paper:
a(n) = (2*n+1)^2*A014641(n) - 2*n*(2*n+1)*A014641(n-1).
A272127(n) = (2*n+1)^2*a(n) - 2*n*(2*n+1)*a(n-1).
From Peter Bala, Jan 22 2019: (Start)
a(n) = 1/4^n * Sum_{k = 0..n} (2*k + 1)^6 * binomial(2*n + 1, n - k).
a(n-1) = 2/4^n * binomial(2*n,n) * ( 1 + 3^6*(n - 1)/(n + 1) + 5^6*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^6*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)

A272127 a(n) = 1680*n^4 - 168*n^2 + 128*n + 1.

Original entry on oeis.org

1, 1641, 26465, 134953, 427905, 1046441, 2172001, 4026345, 6871553, 11010025, 16784481, 24577961, 34813825, 47955753, 64507745, 85014121, 110059521, 140268905, 176307553, 218881065, 268735361, 326656681, 393471585, 470046953, 557289985, 656148201, 767609441
Offset: 0

Views

Author

Vincenzo Librandi, Apr 25 2016

Keywords

Comments

This is the polynomial Qbar(4,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials. - Peter Bala, Jan 21 2019

Crossrefs

Programs

  • Magma
    [1680*n^4-168*n^2+128*n+1: n in [0..50]];
    
  • Mathematica
    Table[1680 n^4 - 168 n^2 + 128 n + 1, {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1},{1,1641,26465,134953,427905},30] (* Harvey P. Dale, Nov 27 2017 *)
  • PARI
    a(n) = 1680*n^4 - 168*n^2 + 128*n + 1; \\ Altug Alkan, Apr 30 2016

Formula

O.g.f.: (1+1636*x+18270*x^2+19028*x^3+1385*x^4)/(1-x)^5.
E.g.f.: (1+1640*x+11592*x^2+10080*x^3+1680*x^4)*exp(x).
a(n) = (2*n+1)*(840*n^3-420*n^2+126*n+1).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), for n>4
See page 7 in Brent's paper:
a(n) = (2*n+1)^2*A272126(n) - 2*n*(2*n+1)*A272126(n-1).
A272128(n) = (2*n+1)^2*a(n) - 2*n*(2*n+1)*a(n-1).
From Peter Bala, Jan 22 2019: (Start)
a(n) = 1/4^n * Sum_{k = 0..n} (2*k + 1)^8 * binomial(2*n + 1, n - k).
a(n-1) = 2/4^n * binomial(2*n,n) * ( 1 + 3^8*(n - 1)/(n + 1) + 5^8*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^8*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)

A272129 a(n) = 32*n^2 - 56*n + 25.

Original entry on oeis.org

25, 1, 41, 145, 313, 545, 841, 1201, 1625, 2113, 2665, 3281, 3961, 4705, 5513, 6385, 7321, 8321, 9385, 10513, 11705, 12961, 14281, 15665, 17113, 18625, 20201, 21841, 23545, 25313, 27145, 29041, 31001, 33025, 35113, 37265, 39481, 41761, 44105, 46513, 48985
Offset: 0

Views

Author

Vincenzo Librandi, Apr 26 2016

Keywords

Comments

Subsequence of A001844.

Crossrefs

Programs

  • Magma
    [32*n^2 - 56*n + 25: n in [0..50]];
    
  • Maple
    [32*n^2-56*n+25$n=0..40]; # Muniru A Asiru, Jan 28 2019
  • Mathematica
    Table[32 n^2 - 56 n + 25, {n, 0, 40}]
    LinearRecurrence[{3,-3,1},{25,1,41},50] (* Harvey P. Dale, Jul 03 2018 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(32*n^2-56*n+25, ", ")); \\ Altug Alkan, Apr 26 2016

Formula

O.g.f.: (25 - 74*x + 113*x^2)/(1-x)^3.
E.g.f.: (25 - 24*x + 32*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
n*a(n) = 1 + 3^5*(n-1)/(n+1) + 5^5*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - Peter Bala, Jan 19 2019

A272132 a(n) = 6144*n^4 - 29184*n^3 + 52416*n^2 - 41840*n + 12465.

Original entry on oeis.org

12465, 1, 3281, 68385, 388849, 1305665, 3307281, 7029601, 13255985, 22917249, 37091665, 57004961, 84030321, 119688385, 165647249, 223722465, 295877041, 384221441, 491013585, 618658849, 769710065, 946867521, 1152978961, 1391039585, 1664192049, 1975726465
Offset: 0

Views

Author

Vincenzo Librandi, Apr 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [6144*n^4 - 29184*n^3 + 52416*n^2 - 41840*n + 12465: n in [0..40]];
    
  • Maple
    [6144*n^4-29184*n^3+52416*n^2-41840*n+12465$n=0..30]; # Muniru A Asiru, Jan 28 2019
  • Mathematica
    Table[6144 n^4 - 29184 n^3 + 52416 n^2 - 41840 n + 12465, {n, 0, 40}]
    LinearRecurrence[{5,-10,10,-5,1},{12465,1,3281,68385,388849},30] (* Harvey P. Dale, Aug 06 2022 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(6144*n^4-29184*n^3+52416*n^2-41840*n+12465, ", ")); \\ Altug Alkan, Apr 26 2016

Formula

O.g.f.: (12465 - 62324*x + 127926*x^2 - 72660*x^3 + 142049*x^4)/(1-x)^5.
E.g.f.: (12465 - 12464*x + 7872*x^2 + 7680*x^3 + 6144*x^4)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
See page 7 in Brent's paper:
a(n) = (2*n-1)^2*A272131(n) - 4*(n-1)^2*A272131(n-1).
A272133(n) = (2*n-1)^2*a(n) - 4*(n-1)^2*a(n-1).
n*a(n) = 1 + 3^9*(n-1)/(n+1) + 5^9*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - Peter Bala, Jan 19 2019

A272131 a(n) = 384*n^3 - 1184*n^2 + 1228*n - 427.

Original entry on oeis.org

-427, 1, 365, 2969, 10117, 24113, 47261, 81865, 130229, 194657, 277453, 380921, 507365, 659089, 838397, 1047593, 1288981, 1564865, 1877549, 2229337, 2622533, 3059441, 3542365, 4073609, 4655477, 5290273, 5980301, 6727865, 7535269, 8404817, 9338813, 10339561
Offset: 0

Views

Author

Vincenzo Librandi, Apr 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [384*n^3 - 1184*n^2 + 1228*n - 427: n in [0..50]];
    
  • Maple
    [384*n^3-1184*n^2+1228*n-427$n=0..35]; # Muniru A Asiru, Jan 28 2019
  • Mathematica
    Table[384 n^3 - 1184 n^2 + 1228 n - 427, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{-427,1,365,2969},40] (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(384*n^3-1184*n^2+1228*n-427, ", ")); \\ Altug Alkan, Apr 26 2016

Formula

O.g.f.: (-427 + 1709*x - 2201*x^2 + 3223*x^3)/(1-x)^4.
E.g.f.: (-427 + 428*x - 32*x^2 + 384*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
See page 7 in Brent's paper:
a(n) = (2*n-1)^2*A272129(n) - 4*(n-1)^2*A272129(n-1).
A272132(n) = (2*n-1)^2*a(n) - 4*(n-1)^2*a(n-1).
n*a(n) = 1 + 3^7*(n-1)/(n+1) + 5^7*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - Peter Bala, Jan 19 2019

A272133 a(n) = 122880*n^5 - 829440*n^4 + 2258688*n^3 - 3076288*n^2 + 2079892*n - 555731.

Original entry on oeis.org

-555731, 1, 29525, 1657129, 16591741, 80872529, 269614501, 711754105, 1604794829, 3229552801, 5964902389, 10302521801, 16861638685, 26403775729, 39847496261, 58283149849, 82987617901, 115439059265, 157331655829, 210590358121, 277385630909, 360148198801
Offset: 0

Views

Author

Vincenzo Librandi, Apr 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [122880*n^5 - 829440*n^4 + 2258688*n^3 -3076288*n^2 + 2079892*n - 555731: n in [0..30]];
    
  • Maple
    [122880*n^5-829440*n^4+2258688*n^3-3076288*n^2+2079892*n-555731$n=0..30]; # Muniru A Asiru, Jan 28 2019
  • Mathematica
    Table[122880 n^5 - 829440 n^4 + 2258688 n^3 - 3076288 n^2 + 2079892 n - 555731, {n, 0, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{-555731,1,29525,1657129,16591741,80872529},30] (* Harvey P. Dale, Feb 10 2021 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(122880*n^5 - 829440*n^4 + 2258688*n^3 - 3076288*n^2 + 2079892*n - 555731, ", ")); \\ Altug Alkan, Apr 26 2016

Formula

O.g.f.: (-555731 + 3334387*x - 8306446*x^2 + 12594614*x^3 - 1244143*x^4 + 8922919*x^5)/(1-x)^6.
E.g.f.: (-555731 + 555732*x - 263104*x^2 + 354048*x^3 + 399360*x^4 + 122880*x^5)*exp(x).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (2*n-1)^2*A272132(n) - 4*(n-1)^2*A272132(n-1), see page 7 in Brent's paper.
n*a(n) = 1 + 3^11*(n-1)/(n+1) + 5^11*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - Peter Bala, Jan 19 2019

A245683 Array T(n,k) read by antidiagonals, where T(0,k) = -A226158(k) and T(n+1,k) = 2*T(n,k+1) - T(n,k).

Original entry on oeis.org

0, 2, 1, 0, 1, 1, -6, -3, -1, 0, 0, -3, -3, -2, -1, 50, 25, 11, 4, 1, 0, 0, 25, 25, 18, 11, 6, 3, -854, -427, -201, -88, -35, -12, -3, 0, 0, -427, -427, -314, -201, -118, -65, -34, -17, 24930, 12465, 6019, 2796, 1241, 520, 201, 68, 17, 0
Offset: 0

Views

Author

Paul Curtz, Jul 29 2014

Keywords

Comments

Take T(n,k) = -A226158(k) and its transform via T(n+1,k) = 2*T(n,k+1) - T(n,k):
0, 1, 1, 0, -1, 0, 3, 0, -17, ...
2, 1, -1, -2, 1, 6, -3, -34, ... = A230324
0, -3, -3, 4, 11, -12, -65, ...
-6, -3, 11, 18, -35, -118, ...
0, 25, 25, -88, -201, ...
50, 25, -201, -314, ...
0, -427, -427, ...
-854, -427, ...
0, ...
Every row is alternatively an autosequence of the first kind, see A226158, and of the second kind, see A190339.
The second column is twice 1, -3, 25, -427, 12465, ... = (-1)^n*A009843(n) which is in the third column. See A132049(n), numerators of Euler's formula for Pi from the Bernoulli numbers, A243963 and A245244. Hence a link between the Genocchi numbers and Pi.
a(n) is the triangle of the increasing antidiagonals.

Examples

			Triangle a(n):
   0,
   2,  1,
   0,  1,  1,
  -6, -3, -1,  0,
   0, -3, -3, -2, -1,
  50, 25, 11,  4,  1,  0,
  etc.
		

Crossrefs

Programs

  • Mathematica
    t[0, 0] = 0; t[0, 1] = 1; t[0, k_] := -k*EulerE[k-1, 0]; t[n_, k_] := t[n, k] = -t[n-1, k] + 2*t[n-1, k+1]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 04 2014 *)
Showing 1-9 of 9 results.