A014641
Odd octagonal numbers: (2n+1)*(6n+1).
Original entry on oeis.org
1, 21, 65, 133, 225, 341, 481, 645, 833, 1045, 1281, 1541, 1825, 2133, 2465, 2821, 3201, 3605, 4033, 4485, 4961, 5461, 5985, 6533, 7105, 7701, 8321, 8965, 9633, 10325, 11041, 11781, 12545, 13333, 14145, 14981, 15841, 16725, 17633, 18565, 19521, 20501, 21505
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..5000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.2.
- Leo Tavares, Illustration: Square Block Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50],n->(2*n+1)*(6*n+1)); # Muniru A Asiru, Feb 05 2019
-
[ (2*n+1)*(6*n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 08 2014
-
A014641:=n->(2*n+1)*(6*n+1); seq(A014641(n), n=0..50); # Wesley Ivan Hurt, Jun 08 2014
-
Table[(2n + 1)(6n + 1), {n, 0, 49}] (* Harvey P. Dale, Mar 24 2011 *)
-
a(n)=(2*n+1)*(6*n+1) \\ Charles R Greathouse IV, Jun 17 2017
A160485
Triangle of the RBS1 polynomial coefficients.
Original entry on oeis.org
1, 1, -2, 1, -8, 12, 1, -2, 60, -120, 1, -128, -168, 0, 1680, 1, 2638, 7320, -5040, -25200, -30240, 1, -98408, -300828, 52800, 1053360, 1330560, 665280, 1, 5307118, 17914260, 2522520, -56456400, -90810720, -60540480, -17297280
Offset: 1
The first few rows of the triangle are:
[1]
[1, -2]
[1, -8, 12]
[1, -2, 60, -120]
[1, -128, -168, 0, 1680]
The first few RBS1(1-2*m,n) polynomials are:
RBS1(-1,n) = 1
RBS1(-3,n) = 1 - 2*n
RBS1(-5,n) = 1 - 8*n + 12*n^2
RBS1(-7,n) = 1 - 2*n + 60*n^2 - 120*n^3
From _Peter Bala_, Jan 22 2019: (Start)
Qbar(r,n) = binomial(2*n+2,n+1)/(2^(2*n+1)) * Sum_{k = 0..n} binomial(n,k)/binomial(n+k+1,k)*(2*k + 1)^(2*r):
Case r = 2: Qbar(2,n) = binomial(2*n+2,n+1)/2^(2*n+1) * ( 1 + 3^4*n/(n+2) + 5^4*n*(n-1)/((n+2)*(n+3)) + 7^4*n*(n-1)*(n-2)/((n+2)*(n+3)*(n+4)) + ... ) = 12*n^2 + 8*n + 1, valid for n a nonnegative integer (when the series terminates). The identity is also valid for complex n with real part greater than 1 (provided the factor binomial(2*n,n) is replaced with the appropriate expression involving the gamma function).
Case r = 3: Qbar(3,n) = binomial(2*n+2,n+1)/(2^(2*n+1)) * ( 1 + 3^6*n/(n+2) + 5^6*n*(n-1)/((n+2)*(n+3)) + 7^6*n*(n-1)*(n-2)/((n+2)*(n+3)*(n+4)) + ... ) = 120*n^3 + 60*n^2 + 2*n + 1, valid for n a nonnegative integer. The identity is also valid for complex n with real part greater than 2.
Note, the case r = 0 is equivalent to the identity 1 = binomial(2*n,n)/2^(2*n-1) * ( 1 + (n-1)/(n+1) + (n-1)*(n-2)/((n+1)*(n+2)) + (n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... ), which is valid for complex n with real part greater than 0. This identity was found by Ramanujan. See Example 6, Chapter 10 in Berndt. (End)
- B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 21.
A009389(2*n) equals the second left hand column divided by 2.
A001813 equals the first right hand column.
The absolute values of the row sums equal the Euler numbers
A000364.
-
nmax := 8; mmax := nmax: A(1, 1) := 1: RBS1(n, 2) := (2*n-1)^2*1-(2*n)*(2*n-1)*1: for m from 3 to mmax do for k from 0 to m-1 do A(m-1, k+1) := coeff(RBS1(n, m-1), n, k) od; RBS1(n+1, m-1) := 0: for k from 0 to m-1 do RBS1(n+1, m-1) := RBS1(n+1, m-1) + A(m-1, k+1)*(n+1)^k od: RBS1(n, m) := (2*n-1)^2*RBS1(n, m-1)-(2*n)*(2*n-1) * RBS1(n+1, m-1) od: for k from 0 to nmax-1 do A(nmax, k+1) := coeff(RBS1(n, nmax), n, k) od: seq(seq(A(n, m), m=1..n), n=1..nmax);
A272126
a(n) = 120*n^3 + 60*n^2 + 2*n + 1.
Original entry on oeis.org
1, 183, 1205, 3787, 8649, 16511, 28093, 44115, 65297, 92359, 126021, 167003, 216025, 273807, 341069, 418531, 506913, 606935, 719317, 844779, 984041, 1137823, 1306845, 1491827, 1693489, 1912551, 2149733, 2405755, 2681337, 2977199, 3294061, 3632643, 3993665
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16).
- Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[120*n^3 + 60*n^2 + 2*n + 1: n in [0..50]];
-
Table[120 n^3 + 60 n^2 + 2 n + 1, {n, 0, 40}]
LinearRecurrence[{4,-6,4,-1},{1,183,1205,3787},40] (* Harvey P. Dale, Nov 08 2020 *)
-
a(n) = 120*n^3 + 60*n^2 + 2*n + 1; \\ Altug Alkan, Apr 30 2016
A272127
a(n) = 1680*n^4 - 168*n^2 + 128*n + 1.
Original entry on oeis.org
1, 1641, 26465, 134953, 427905, 1046441, 2172001, 4026345, 6871553, 11010025, 16784481, 24577961, 34813825, 47955753, 64507745, 85014121, 110059521, 140268905, 176307553, 218881065, 268735361, 326656681, 393471585, 470046953, 557289985, 656148201, 767609441
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16).
- Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[1680*n^4-168*n^2+128*n+1: n in [0..50]];
-
Table[1680 n^4 - 168 n^2 + 128 n + 1, {n, 0, 30}]
LinearRecurrence[{5,-10,10,-5,1},{1,1641,26465,134953,427905},30] (* Harvey P. Dale, Nov 27 2017 *)
-
a(n) = 1680*n^4 - 168*n^2 + 128*n + 1; \\ Altug Alkan, Apr 30 2016
A272129
a(n) = 32*n^2 - 56*n + 25.
Original entry on oeis.org
25, 1, 41, 145, 313, 545, 841, 1201, 1625, 2113, 2665, 3281, 3961, 4705, 5513, 6385, 7321, 8321, 9385, 10513, 11705, 12961, 14281, 15665, 17113, 18625, 20201, 21841, 23545, 25313, 27145, 29041, 31001, 33025, 35113, 37265, 39481, 41761, 44105, 46513, 48985
Offset: 0
-
[32*n^2 - 56*n + 25: n in [0..50]];
-
[32*n^2-56*n+25$n=0..40]; # Muniru A Asiru, Jan 28 2019
-
Table[32 n^2 - 56 n + 25, {n, 0, 40}]
LinearRecurrence[{3,-3,1},{25,1,41},50] (* Harvey P. Dale, Jul 03 2018 *)
-
lista(nn) = for(n=0, nn, print1(32*n^2-56*n+25, ", ")); \\ Altug Alkan, Apr 26 2016
A272132
a(n) = 6144*n^4 - 29184*n^3 + 52416*n^2 - 41840*n + 12465.
Original entry on oeis.org
12465, 1, 3281, 68385, 388849, 1305665, 3307281, 7029601, 13255985, 22917249, 37091665, 57004961, 84030321, 119688385, 165647249, 223722465, 295877041, 384221441, 491013585, 618658849, 769710065, 946867521, 1152978961, 1391039585, 1664192049, 1975726465
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014 (page 16).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[6144*n^4 - 29184*n^3 + 52416*n^2 - 41840*n + 12465: n in [0..40]];
-
[6144*n^4-29184*n^3+52416*n^2-41840*n+12465$n=0..30]; # Muniru A Asiru, Jan 28 2019
-
Table[6144 n^4 - 29184 n^3 + 52416 n^2 - 41840 n + 12465, {n, 0, 40}]
LinearRecurrence[{5,-10,10,-5,1},{12465,1,3281,68385,388849},30] (* Harvey P. Dale, Aug 06 2022 *)
-
lista(nn) = for(n=0, nn, print1(6144*n^4-29184*n^3+52416*n^2-41840*n+12465, ", ")); \\ Altug Alkan, Apr 26 2016
A272131
a(n) = 384*n^3 - 1184*n^2 + 1228*n - 427.
Original entry on oeis.org
-427, 1, 365, 2969, 10117, 24113, 47261, 81865, 130229, 194657, 277453, 380921, 507365, 659089, 838397, 1047593, 1288981, 1564865, 1877549, 2229337, 2622533, 3059441, 3542365, 4073609, 4655477, 5290273, 5980301, 6727865, 7535269, 8404817, 9338813, 10339561
Offset: 0
-
[384*n^3 - 1184*n^2 + 1228*n - 427: n in [0..50]];
-
[384*n^3-1184*n^2+1228*n-427$n=0..35]; # Muniru A Asiru, Jan 28 2019
-
Table[384 n^3 - 1184 n^2 + 1228 n - 427, {n, 0, 40}]
LinearRecurrence[{4,-6,4,-1},{-427,1,365,2969},40] (* Harvey P. Dale, Aug 24 2024 *)
-
lista(nn) = for(n=0, nn, print1(384*n^3-1184*n^2+1228*n-427, ", ")); \\ Altug Alkan, Apr 26 2016
A272133
a(n) = 122880*n^5 - 829440*n^4 + 2258688*n^3 - 3076288*n^2 + 2079892*n - 555731.
Original entry on oeis.org
-555731, 1, 29525, 1657129, 16591741, 80872529, 269614501, 711754105, 1604794829, 3229552801, 5964902389, 10302521801, 16861638685, 26403775729, 39847496261, 58283149849, 82987617901, 115439059265, 157331655829, 210590358121, 277385630909, 360148198801
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16)
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[122880*n^5 - 829440*n^4 + 2258688*n^3 -3076288*n^2 + 2079892*n - 555731: n in [0..30]];
-
[122880*n^5-829440*n^4+2258688*n^3-3076288*n^2+2079892*n-555731$n=0..30]; # Muniru A Asiru, Jan 28 2019
-
Table[122880 n^5 - 829440 n^4 + 2258688 n^3 - 3076288 n^2 + 2079892 n - 555731, {n, 0, 40}]
LinearRecurrence[{6,-15,20,-15,6,-1},{-555731,1,29525,1657129,16591741,80872529},30] (* Harvey P. Dale, Feb 10 2021 *)
-
lista(nn) = for(n=0, nn, print1(122880*n^5 - 829440*n^4 + 2258688*n^3 - 3076288*n^2 + 2079892*n - 555731, ", ")); \\ Altug Alkan, Apr 26 2016
A245683
Array T(n,k) read by antidiagonals, where T(0,k) = -A226158(k) and T(n+1,k) = 2*T(n,k+1) - T(n,k).
Original entry on oeis.org
0, 2, 1, 0, 1, 1, -6, -3, -1, 0, 0, -3, -3, -2, -1, 50, 25, 11, 4, 1, 0, 0, 25, 25, 18, 11, 6, 3, -854, -427, -201, -88, -35, -12, -3, 0, 0, -427, -427, -314, -201, -118, -65, -34, -17, 24930, 12465, 6019, 2796, 1241, 520, 201, 68, 17, 0
Offset: 0
Triangle a(n):
0,
2, 1,
0, 1, 1,
-6, -3, -1, 0,
0, -3, -3, -2, -1,
50, 25, 11, 4, 1, 0,
etc.
-
t[0, 0] = 0; t[0, 1] = 1; t[0, k_] := -k*EulerE[k-1, 0]; t[n_, k_] := t[n, k] = -t[n-1, k] + 2*t[n-1, k+1]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 04 2014 *)
Showing 1-9 of 9 results.
Comments