cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A010815 From Euler's Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

When convolved with the partition numbers A000041 gives 1, 0, 0, 0, 0, ...
Also, number of different partitions of n into parts of -1 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
The comment that "when convolved with the partition numbers gives [1, 0, 0, 0, ...]" is equivalent to row sums of triangle A145975 = [1, 0, 0, 0, ...]; where A145975 is a partition number convolution triangle. - Gary W. Adamson, Oct 25 2008
When convolved with n-th partial sums of A000041 = the binomial sequence starting (1, n, ...). Example: A010815 convolved with A014160 (partial sum operation applied thrice to the partition numbers) = (1, 3, 6, 10, ...). - Gary W. Adamson, Nov 11 2008
(A000012^(-n) * A000041) convolved with A010815 = n-th row of the inverse of Pascal's triangle, (as a vector, followed by zeros); where A000012^(-1) = the pairwise difference operator. Example: (A000012^(-4) * A000041) convolved with A010815 = (1, -4, 6, -4, 1, 0, 0, 0, ...). - Gary W. Adamson, Nov 11 2008
Also sum of [product of (1-2/(hook lengths)^2)] over all partitions of n. - Wouter Meeussen, Sep 16 2010
Cayley (1895) begins article 387 with "Write for shortness sqrt(2k'K / pi) / [1-q^{2m-1}]^2 = G, ..." which is a convoluted way of writing G = [1-q^{2m}] = (1-q^2)(1-q^4)... - Michael Somos, Aug 01 2011
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^3, b = x. - Michael Somos, Jan 21 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 1 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 - x^35 - x^40 + ...
G.f. = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + q^529 + q^625 + ...
From _Seiichi Manyama_, Mar 04 2017: (Start)
G.f.
= 1 + (-x - 3*x^2/2 - 4*x^3/3 -  7*x^4/4  -  6*x^5/5 - ...)
     + 1/2 * (x^2   + 3*x^3   + 59*x^4/12 + 15*x^5/2 + ...)
              + 1/6 * (-x^3   -  9*x^4/2  - 43*x^5/4 - ...)
                         + 1/24 * (x^4    +  6*x^5   + ...)
                                   + 1/120 * (-x^5   - ...)
                                             + ...
= 1 - x - x^2 + x^5 + .... (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. See page 3.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.
  • A. Cayley, An Elementary Treatise on Elliptic Functions, G. Bell and Sons, London, 1895, p. 295, Art. 387.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5g].
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.12) and (32.13).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 353.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.
  • A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A010815List(len) = DedekindEta(len, 1)
    A010815List(93) |> println # Peter Luschny, Mar 09 2018
    
  • Julia
    function A010815(n)
        r = 24 * n + 1
        m = isqrt(r)
        m * m != r && return 0
        iseven(div(m + m % 6, 6)) ? 1 : -1
    end # Peter Luschny, Sep 09 2021
  • Magma
    Coefficients(&*[1-x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Jan 15 2017
    
  • Maple
    A010815 := mul((1-x^m), m=1..100);
    A010815 := proc(n) local x,m;
        product(1-x^m,m=1..n) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
    A010815 := proc(n) 24*n + 1; if issqr(%) then sqrt(%);
    (-1)^irem(iquo(% + irem(%, 6), 6), 2) else 0 fi end: # Peter Luschny, Oct 02 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> -x^(1/2)}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
    CoefficientList[ Series[ Product[(1 - x^k), {k, 1, 70}], {x, 0, 70}], x]
    (* hooklength[ ] cfr A047874 *) Table[ Tr[ ( Times@@(1-2/Flatten[hooklength[ # ]]^2) )&/@ Partitions[n] ],{n,26}] (* Wouter Meeussen, Sep 16 2010 *)
    CoefficientList[ Series[ QPochhammer[q], {q, 0, 100}], q] (* Jean-François Alcover, Dec 04 2013 *)
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ[m], KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Jun 04 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, May 04 2018 *)
    Table[m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0], {k, 0, 100}] (* Vaclav Kotesovec, Jul 09 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n)), n))}; /* Michael Somos, Jun 05 2002 */
    
  • PARI
    {a(n) = polcoeff( prod( k=1, n, 1 - x^k, 1 + x * O(x^n)), n)}; /* Michael Somos, Nov 19 2011 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), if( (n%2) && (n%3), (-1)^round( n/6 )))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x^n); polcoeff( sum( k=1, (sqrtint( 8*n + 1)-1) \ 2, A *= x^k / (x^k - 1) + x * O(x^(n - (k^2-k)/2)), 1), n))}; /* Michael Somos, Aug 18 2006 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q))} \\ Altug Alkan, Mar 21 2018
    
  • Python
    from math import isqrt
    def A010815(n):
        m = isqrt(24*n+1)
        return 0 if m**2 != 24*n+1 else ((-1)**((m-1)//6) if m % 6 == 1 else (-1)**((m+1)//6)) # Chai Wah Wu, Sep 08 2021
    

Formula

a(n) = (-1)^m if n is of the form m(3m+-1)/2; otherwise a(n)=0. The values of n such that |a(n)|=1 are the generalized pentagonal numbers, A001318. The values of n such that a(n)=0 is A090864.
Expansion of the Dedekind eta function without the q^(1/24) factor in powers of q.
Euler transform of period 1 sequence [ -1, -1, -1, ...].
G.f.: (q; q){oo} = Product{k >= 1} (1-q^k) = Sum_{n=-oo..oo} (-1)^n*q^(n*(3n+1)/2). The first notation is a q-Pochhammer symbol.
Expansion of f(-x) := f(-x, -x^2) in powers of x. A special case of Ramanujan's general theta function; see Berndt reference. - Michael Somos, Apr 08 2003
a(n) = A067661(n) - A067659(n). - Jon Perry, Jun 17 2003
Expansion of f(x^5, x^7) - x * f(x, x^11) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 21 2012
G.f.: q^(-1/24) * eta(t), where q = exp(2 Pi i t) and eta is the Dedekind eta function.
G.f.: 1 - x - x^2(1-x) - x^3(1-x)(1-x^2) - ... - Jon Perry, Aug 07 2004
Given g.f. A(x), then B(q) = q * A(q^3)^8 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - v^3 + 16*u*w^2. - Michael Somos, May 02 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(x^q), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^9*u3*u6^3 - u2^9*u3^4 + 9*u1^4*u2*u6^8. - Michael Somos, May 02 2005
a(n) = b(24*n + 1) where b() is multiplicative with b(p^2e) = (-1)^e if p == 5 or 7 (mod 12), b(p^2e) = +1 if p == 1 or 11 (mod 12) and b(p^(2e-1)) = b(2^e) = b(3^e) = 0 if e>0. - Michael Somos, May 08 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^16*w^8 - v^24 + 16*u^8*w^16. - Michael Somos, May 08 2005
a(n) = (-1)^n * A121373(n). a(25*n + 1) = -a(n). a(5*n + 3) = a(5*n + 4) = 0. a(5*n) = A113681(n). a(5*n + 2) = - A116915(n). - Michael Somos, Feb 26 2006
G.f.: 1 + Sum_{k>0} (-1)^k * x^((k^2 + k) / 2) / ((1 - x) * (1 - x^2) * ... * (1 - x^k)). - Michael Somos, Aug 18 2006
a(n) = -(1/n)*Sum_{k=1..n} sigma(k)*a(n-k). - Vladeta Jovovic, Aug 28 2002
G.f.: A(x) = 1 - x/G(0); G(k) = 1 + x - x^(k+1) - x*(1-x^(k+1))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2012
Expansion of f(-x^2) * chi(-x) = psi(-x) * chi(-x^2) = psi(x) * chi(-x)^2 = f(-x^2)^2 / psi(x) = phi(-x) / chi(-x) = phi(-x^2) / chi(x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Nov 16 2015
G.f.: exp( Sum_{n>=1} -sigma(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
G.f.: Sum_{n >= 0} x^(n*(2*n-1))*(2*x^(2*n) - 1)/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 02 2021
The g.f. A(x) satisfies A(x^2) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k >= n+1} 1 - x^k = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + + - - .... - Peter Bala, Feb 12 2021
For m >= 0, A(x) = (1 - x)*(1 - x^2)*...*(1 - x^m) * Sum_{n >= 0} (-1)^n * x^(n*(n+2*m+1)/2) /(Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025
From Friedjof Tellkamp, Mar 19 2025: (Start)
Sum_{n>=1} a(n)/n = 6 - 4*Pi/sqrt(3).
Sum_{n>=1} a(n)/n^2 = -108 + 16*sqrt(3)*Pi + 2*Pi^2.
Sum_{n>=1} a(n)/n^k = Sum_{i=0..k} 6^(k-i)*C(-k, k-i)*A(i), where A(i)=(2^i-2)*(3^i-3)*zeta(i) for even i, and A(i)=-G(i/2-1/2)*(2^i+2)*(2*Pi)^i/(sqrt(3)*Gamma(i+1)) for odd i, with G(n>0) as the Glaisher's numbers (A002111) and G(0)=1/2. (End)

Extensions

Additional comments from Michael Somos, Jun 05 2002

A009843 E.g.f. x/cos(x) (odd powers only).

Original entry on oeis.org

1, 3, 25, 427, 12465, 555731, 35135945, 2990414715, 329655706465, 45692713833379, 7777794952988025, 1595024111042171723, 387863354088927172625, 110350957750914345093747, 36315529600705266098580265, 13687860690719716241164167451, 5858139922124796551409938058945
Offset: 0

Views

Author

Keywords

Comments

Expanding x/cosh(x) gives alternated signed values at odd positions.
Related to the formulas sum(k>0,sin(kx)/k^(2n+1))=(-1)^(n+1)/2*x^(2n+1)/(2n+1)!*sum(i=0,2n,(2Pi/x)^i*B(i)*C(2n+1,i)) and if x=Pi/2 sum(k>0,(-1)^(k+1)/k^(2n+1))=(-1)^n*E(2n)*Pi^(2n+1)/2^(2n+2)/(2n)!. - Benoit Cloitre, May 01 2002

Examples

			x/cos(x) = x + 1/2*x^3 + 5/24*x^5 + 61/720*x^7 + 277/8064*x^9 + ...
		

Crossrefs

Programs

  • Maple
    seq((2*i+1)!*coeff(series(x/cos(x),x,32),x,2*i+1),i=0..13);
    A009843 := n -> (-1)^n*(2*n+1)*euler(2*n): # Peter Luschny
  • Mathematica
    c = CoefficientList[Series[1/MittagLefflerE[2,z^2],{z,0,40}],z]; Table[(-1)^n* Factorial[2*n+1]*c[[2*n+1]], {n,0,16}] (* Peter Luschny, Jul 03 2016 *)
  • PARI
    a(n)=(-1)^(n+1)*sum(i=0,2*n+1,binomial(2*n+1,i)*bernfrac(i)*4^i)
    
  • PARI
    a(n)=subst(bernpol(2*n+1),'x,1/4)*4^(2*n+1)*(-1)^(n+1) \\ Charles R Greathouse IV, Dec 10 2014
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [a(0), a(1), ..., a(n)] for n > 0.
    def A009843_list(n):
        S = [0 for i in range(n+1)]
        S[0] = 1
        for k in range(1, n+1):
            S[k] = k*S[k-1]
        for k in range(1, n+1):
            for j in range(k, n+1):
                S[j] = (j-k)*S[j-1]+(j-k+1)*S[j]
            S[k] = (2*k+1)*S[k]
        return S
    print(A009843_list(10)) # Peter Luschny, Aug 09 2011

Formula

a(n) = (2n+1)*A000364(n) = sum(i=0, 2n, B(i)*C(2n+1, i)*4^i)=(2n+1)*E(2n) where B(i) are the Bernoulli numbers, C(2n, i) the binomial numbers and E(2n) the Euler numbers. - Benoit Cloitre, May 01 2002
Recurrence: a(n) = -(-1)^n*Sum[i=0..n-1, (-1)^i*a(i)*C(2n+1, 2i+1) ]. - Ralf Stephan, Feb 24 2005
a(n) = 4^n |E_{2n}(1/2)+E_{2n}(1)| (2n+1) for n > 0; E_{n}(x) Euler polynomial. - Peter Luschny, Nov 25 2010
a(n) = (2*n+1)! * [x^(2*n+1)] x/cos(x).
From Sergei N. Gladkovskii, Nov 15 2011, Oct 19 2012, Nov 10 2012, Jan 14 2013, Apr 10 2013, Oct 13 2013, Dec 01 2013: (Start) Continued fractions:
E.g.f.: x / cos(x) = x+x^3/Q(0); Q(k) = 8k+2-x^2/(1+(2k+1)*(2k+2)/Q(k+1)).
E.g.f.: x + x^3/U(0) where U(k) = (2*k+1)*(2*k+2) - x^2 + x^2*(2*k+1)*(2*k+2)/U(k+1).
G.f.: 1/G(0) where G(k) = 1 - x*(8*k^2+8*k+3)-16*x^2*(k+1)^4/G(k+1).
E.g.f.: 2*x/(Q(0) + 1) where Q(k)= 1 - x/(2*k+1)/(2*k+2)/(1 - 1/(1 + 1/Q(k+1))).
Let A(x) = S_{n>=0}a(n)*x^n/(2*n+1)! then A(x) = 1 + Q(0)*x/(2-x) where Q(k) = 1 - x*(2*k+1)*(2*k+2)/(x*(2*k+1)*(2*k+2) + ((2*k+1)*(2*k+2) - x)*((2*k+3)*(2*k+4) - x)/Q(k+1)).
G.f.: T(0)/(1-3*x) where T(k) = 1 - 16*x^2*(k+1)^4/(16*x^2*(k+1)^4 - (1 - x*(8*k^2 +8*k+3)) *(1 - x*(8*k^2+24*k+19))/T(k+1)).
G.f.: 1/T(0) where T(k) = 1 + x - x*(2*k+2)^2/(1 - x*(2*k+2)^2/T(k+1)). (End)
a(n) = (-1)^n*2^(4*n+1)*(2*n+1)*(zeta(-2*n,1/4)-zeta(-2*n,3/4)). - Peter Luschny, Jul 22 2013
From Peter Bala, Mar 02 2015: (Start)
a(n) = (-1)^(n+1)*4^(2*n + 1)*B(2*n + 1,1/4), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A069852 and A069994.
Conjecturally, a(n) = the unsigned numerator of B(2*n+1,1/4).
G.f. for signed version of sequence: Sum_{n >= 0} { 1/(n + 1) * Sum_{k = 0..n} (-1)^k*binomial(n,k)/( (1 - (4*k + 1)*x)*(1 - (4*k + 3)*x) ) } = 1 - 3*x^2 + 25*x^4 - 427*x^6 + .... (End)
a(n) ~ (2*n+1)! * 2^(2*n+2)/Pi^(2*n+1). - Vaclav Kotesovec, Jul 04 2016
G.f.: 1/(1 + x - 4*x/(1 - 4*x/(1 + x - 16*x/(1 - 16*x/(1 + x - 36*x/(1 - 36*x/(1 + x - ...))))))). Cf. A005439. - Peter Bala, May 07 2017

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997

A083007 a(n) = Sum_{k=0..n-1} 3^k*B(k)*C(n,k) where B(k) is the k-th Bernoulli number and C(n,k)=binomial(n,k).

Original entry on oeis.org

0, 1, -2, 1, 4, -5, -26, 49, 328, -809, -6710, 20317, 201772, -722813, -8370194, 34607305, 457941136, -2145998417, -31945440878, 167317266613, 2767413231220, -16020403322021, -291473080313162, 1848020950359841, 36679231132772824, -252778977216700025, -5435210060467425446
Offset: 0

Views

Author

Benoit Cloitre, May 31 2003

Keywords

Crossrefs

Programs

  • Maple
    A083007 := proc(n)
        3*x/(1+exp(x)+exp(2*x)) ;
        coeftayl(%,x=0,n) ;
        %*n! ;
    end proc:
    seq(A083007(n),n=0..30) ; # R. J. Mathar, Jul 13 2023
  • Mathematica
    Range[0, 15]! CoefficientList[ Series[ 3x/(1 + Exp[x] + Exp[ 2x]), {x, 0, 15}], x] (* Robert G. Wilson v, Oct 26 2012 *)
    Table[Sum[3^k BernoulliB[k]Binomial[n,k],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, May 26 2014 *)
  • PARI
    a(n)=sum(k=0,n-1,3^k*binomial(n,k)*bernfrac(k))

Formula

E.g.f.: 3x/(1+e^x+e^(2x)). - Ira M. Gessel, Jan 28 2012
From Peter Bala, Mar 01 2015: (Start)
a(2*n+1) = (-1)^(n+1)*A002111(n) for n >= 1.
a(n) = 3^n * ( B(n,1/3) - B(n,0) ), where B(n,x) denotes the n-th Bernoulli polynomial. More generally, Almkvist and Meurman show that k^n * ( B(n, 1/k) - B(n, 0) ) is an integer sequence for k = 2,3,4,..., which proves the integrality of A083008 through A083014.
a(0) = 1 and for n >= 1, a(n) = 1 - 1/(n + 1)*Sum_{k = 1..n-1} 3^(n-k)*binomial(n+1,k)*a(k) (Sury, Section 1). (End)

A047788 Numerators of Glaisher's I-numbers.

Original entry on oeis.org

1, 1, 1, 7, 809, 1847, 55601, 6921461, 126235201, 8806171927, 2288629046003, 80348736972167, 10111159088668001, 40453941942593304589, 258227002122139705201, 51215766794507248883047, 34747165199239302488636803, 2962605017328303351107945687
Offset: 0

Views

Author

Keywords

Comments

Conjecture: L(2n+1, chi3) = a(n)/A047789(n) * (2*Pi)^(2n+1)/((2n)!*3^(2n+3/2)), where L(s, chi3) = Sum_{k>=1} Legendre(k,3)/k^s = Sum_{k>=1} A102283(k)/k^s is the Dirichlet L-function for the non-principal character modulo 3. - Jianing Song, Nov 17 2019

Examples

			1/2, 1/3, 1, 7, 809/9, 1847, 55601, 6921461/3, ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 3/(2*(1+2*Cosh(x))) )); [Numerator((-1)^(n+1)*Factorial(2*n-2)* b[2*n-1]): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, May 17 2019
    
  • Maple
    S:= series(3/(2+4*cos(x)),x,101):
    seq(numer(coeff(S,x,2*j)*(2*j)!),j=0..50); # Robert Israel, Aug 14 2018
  • Mathematica
    terms = 20; CoefficientList[(3/2)/(1+Exp[x]+Exp[-x]) + O[x]^(2terms), x]* Range[0, 2terms-2]! // Abs // Numerator // DeleteCases[#, 0]& (* Jean-François Alcover, Feb 28 2019 *)
    a[0]:=1; a[n_]:=Numerator[FunctionExpand[(PolyGamma[2*n, 1/3] + (3^(2*n+1)-1)*(2*n)!*Zeta[2*n+1]/2)*Sqrt[3]/(-2^(2*n)*Pi^(2*n+1))]]; Table[a[n], {n,0,17}] (* Detlef Meya, Sep 28 2024 *)
  • PARI
    a(n)=if(n<1,(n==0),n*=2;numerator(n!* polcoeff(3/(2+4*cos(x+O(x^n) )), n))) /* Michael Somos, Feb 26 2004 */
    
  • Sage
    [numerator( (-1)^n*factorial(2*n)*( 3/(2*(1+2*cosh(x))) ).series(x, 2*n+2).list()[2*n]) for n in (0..30)] # G. C. Greubel, May 17 2019

Formula

E.g.f. for (-1)^n*I(n) is (3/2)/(1 + 2*cosh(x)).

A047789 Denominators of Glaisher's I-numbers.

Original entry on oeis.org

2, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1
Offset: 0

Views

Author

Keywords

Examples

			1/2, 1/3, 1, 7, 809/9, 1847, 55601, 6921461/3,...
		

Crossrefs

Programs

  • Maple
    f:= n -> 3^padic:-ordp(2*n+1,3):
    f(0):= 2:
    map(f, [$0..200]); # Robert Israel, Aug 14 2018
  • Mathematica
    a[0] = 2; a[n_] := 3^IntegerExponent[2n+1, 3];
    Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Feb 27 2019 *)
    a[0]:=2; a[n_]:=Denominator[FunctionExpand[(PolyGamma[2*n, 1/3] + (3^(2*n+1)-1)*(2*n)!*Zeta[2*n+1]/2)*Sqrt[3]/(-2^(2*n)*Pi^(2*n+1))]]; Table[a[n], {n,0,100}] (* Detlef Meya, Sep 28 2024 *)
  • PARI
    a(n)=if(n<1,2*(n==0),3^valuation(2*n+1,3)) /* Michael Somos, Feb 26 2004 */
    
  • PARI
    a(n)=if(n<1,2*(n==0),n*=2;denominator(n!*polcoeff(3/(2+4*cos(x+O(x^n))),n))) /* Michael Somos, Feb 26 2004 */

Formula

From Robert Israel, Aug 14 2018: (Start)
For n >= 1, a(3*n) = a(3*n+2) = 1 and a(3*n+1) = 3*a(n).
G.f. g(x) satisfies g(x) = 3*x*g(x^3) + 2 - 3*x + (x^2+x^3)/(1-x^3). (End)
G.f.: 1 + Sum_{k>=0} (3^k*x^((5*3^k - 1)/2) + 3^k*x^((3^k - 1)/2))/(1 - x^(3^(k + 1))). - Miles Wilson, Dec 01 2024

A069852 a(n) = Sum_{i=0..2n} B(i)*C(2n+1,i)*5^i where B(i) are the Bernoulli numbers, C(2n,i) the binomial numbers.

Original entry on oeis.org

6, -74, 1946, -88434, 6154786, -607884394, 80834386026, -13923204233954, 3015393801263666, -801997872697905114, 256982712667627683706, -97641716941862894337874, 43406301788286350509870146, -22319737637152541506923644234
Offset: 1

Views

Author

Benoit Cloitre, May 01 2002

Keywords

Comments

Related to those formulas derived from Bernoulli polynomials: Sum_{k>0} sin(k*x)/k^(2n+1) = (-1)^(n+1)/2*x^(2n+1)/(2n+1)!*Sum_{i=0..2n}(2Pi/x)^i*B(i)*C(2n+1,i).

Crossrefs

Programs

  • Maple
    seq(5^(2*n+1)*bernoulli(2*n+1,1/5),n=1..14); # (after Peter Bala) Peter Luschny, Mar 08 2015
  • Mathematica
    Table[5^(2n+1) BernoulliB[2n+1, 1/5], {n, 1, 14}] (* Jean-François Alcover, Jun 03 2019, from Maple *)
  • PARI
    for(n=1,25,print1(sum(i=0,2*n,binomial(2*n+1,i)*bernfrac(i)*5^i),","))

Formula

From Peter Bala, Mar 02 2015: (Start)
a(n) = 5^(2*n + 1)*B(2*n + 1,1/5), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A009843 and A069994.
Conjecturally, a(n) = the signed numerator of B(2*n + 1,1/5).
G.f.: t/2*( 3 - 5*sinh(3*t/2)/sinh(5*t/2) ) = 6*t^3/3! - 74*t^5/5! + 1946*t^7/7! - ....
G.f. for signed version of sequence: 3/2 + 3/2*Sum_{n >= 0} { 1/(n+1) * Sum_{k = 0..n} (-1)^(k+1)*binomial(n,k)/( (1 - (5*k + 1)*x)*(1 - (5*k + 4)*x) ) } = 6*x^2 - 74*x^4 + 1946*x^6 + .... (End)

A002609 Glaisher's function G(n) (18 squares version).

Original entry on oeis.org

1, -20, -80, 144, 610, -448, -1120, 2240, -3423, -12200, 14800, 29440, -5470, -6272, -48800, -81664, 73090, 68460, 15600, 87840, -139776, 82880, 189920, -474112, -18525, 109400, -251040, 412160, -128222, -273280, 54400, 1059840, 1847040
Offset: 1

Views

Author

Keywords

Comments

It would be nice to have a q-series that generates this sequence. Glaisher gives many formulas but they are difficult to follow.

References

  • J. W. L. Glaisher, On the representation of a number as sum of 18 squares, Quart. J. Math. 38 (1907), 289-351 (see p. 311). [The whole 1907 volume of The Quarterly Journal of Pure and Applied Mathematics, volume 38, is freely available from Google Books]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Different from A002111 (another Glaisher G(n)).

Formula

a(n) = A002611(2*n) - 16*A002611(n). - Sean A. Irvine, Mar 04 2019

Extensions

Edited and signs added by N. J. A. Sloane, Nov 26 2018
More terms from Sean A. Irvine, Mar 04 2019

A069994 a(n) = Sum_{i=0..2n} B(i)*C(2n+1,i)*6^i where B(i) are the Bernoulli numbers, C(2n,i) the binomial coefficients.

Original entry on oeis.org

-2, 10, -170, 6370, -415826, 41649850, -5922729722, 1134081384850, -281284596509858, 87722769712529770, -33597252908389628234, 15502327024398065811010, -8481855507605264686660850, 5429636257086663655134162970
Offset: 1

Views

Author

Benoit Cloitre, May 01 2002

Keywords

Comments

Related to those formulas derived from Bernoulli polynomials: Sum_{k>0} sin(k*x)/k^(2n+1) = (-1)^(n+1)/2*x^(2n+1)/(2n+1)!*Sum_{i=0..2n} (2Pi/x)^i*B(i)*C(2n+1,i).

Crossrefs

Programs

  • Maple
    seq(6^(2*n-1)*bernoulli(2*n-1,1/6),n=1..14); # (after Peter Bala) Peter Luschny, Mar 08 2015
  • PARI
    for(n=1,25,print1(sum(i=0,2*n,binomial(2*n+1,i)*bernfrac(i)*6^i),","))

Formula

From Peter Bala, Mar 02 2015: (Start)
a(n) = 6^(2*n - 1)*B(2*n - 1,1/6), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A009843, A069852.
Conjecturally, a(n) = 2 * the unsigned numerator of B(2*n - 1,1/6). If true then this sequence is a bisection of 2*A158073.
G.f.: -3*t*sinh(2*t)/sinh(3*t) = -2*t + 10*t^3/3! - 170*t^5/5! + ....
G.f.: Sum_{n >= 0} { 2/(n+1) * Sum_{k = 0..n} (-1)^(k+1)*binomial(n,k)/( (1 - (6*k + 1)*x)*(1 - (6*k + 5)*x) ) } = -2 + 10*x^2 - 170*x^4 + 6370*x^6 - ....
(End)

A364112 Expansion of e.g.f. 3*x/(exp(-3*x)+exp(-x)+exp(x)).

Original entry on oeis.org

0, 1, 2, -5, -28, 85, 806, -3185, -41656, 207913, 3428810, -20824925, -413027284, 2961364861, 68560259054, -567040692425, -15005357203312, 140642298254929, 4187120881320338, -43861384856264885, -1450918780756640140, 16798626454194814117, 611263061851828001462, -7751163512199032905505
Offset: 0

Views

Author

F. Chapoton, Jul 13 2023

Keywords

Comments

The terms of even indices are related to Bernoulli numbers. For example, 413027284 = 2^2 * 23 * 73 * 89 * 691 and 15005357203312 = 2^4 * 7 * 31 * 41 * 151 * 193 * 3617.
The terms of odd indices are related to the generalized Bernoulli numbers attached to the primitive Dirichlet character of period 3 (see A002111).

Crossrefs

Very similar to A083007.
Related to A158073 and A002111.

Programs

  • PARI
    my(N=25, x='x+O('x^N)); Vec(serlaplace(3*x/(exp(-3*x)+exp(-x)+exp(x))), -N) \\ Michel Marcus, Jul 13 2023
  • Sage
    x = PowerSeriesRing(QQ, 'x').gen()
    N = 20
    f = (3*x/((-3*x).exp(N)+(-x).exp(N)+(x).exp(N))).egf_to_ogf()
    print(list(f))
    

Formula

E.g.f.: 3*x/(exp(-3*x)+exp(-x)+exp(x)).

A364199 Expansion of e.g.f. 2*x/(exp(-2*x)+exp(x)).

Original entry on oeis.org

0, 1, 1, -6, -13, 110, 363, -4214, -18581, 276678, 1525355, -27753022, -183611829, 3948004606, 30473073547, -756031185030, -6669149100757, 187521633674294, 1860949703300139, -58481734930175438, -644853406058229365, 22398157925324204142, 271672536688626976331, -10334883450918076967446
Offset: 0

Views

Author

F. Chapoton, Jul 13 2023

Keywords

Comments

The terms with even indices are related to Bernoulli numbers. For example, 183611829 = 3 * 23 * 691 * 3851 and 6669149100757 = 11^2 * 13 * 257 * 3617 * 4561.
The terms with odd indices are related to the generalized Bernoulli numbers attached to the primitive Dirichlet character of period 3 (see A002111).

Crossrefs

Very similar to the Genocchi numbers A036968.
Related to A156179 and A002111.

Programs

  • PARI
    my(N=25, x='x+O('x^N)); Vec(serlaplace(2*x/(exp(-2*x)+exp(x))), -N) \\ Michel Marcus, Jul 15 2023
  • Sage
    x = PowerSeriesRing(QQ, 'x').gen()
    N = 20
    f = (2*x/((-2*x).exp(N)+(x).exp(N))).egf_to_ogf()
    print(list(f))
    

Formula

E.g.f.: 2*x/(exp(-2*x)+exp(x)).
Showing 1-10 of 10 results.