cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A009843 E.g.f. x/cos(x) (odd powers only).

Original entry on oeis.org

1, 3, 25, 427, 12465, 555731, 35135945, 2990414715, 329655706465, 45692713833379, 7777794952988025, 1595024111042171723, 387863354088927172625, 110350957750914345093747, 36315529600705266098580265, 13687860690719716241164167451, 5858139922124796551409938058945
Offset: 0

Views

Author

Keywords

Comments

Expanding x/cosh(x) gives alternated signed values at odd positions.
Related to the formulas sum(k>0,sin(kx)/k^(2n+1))=(-1)^(n+1)/2*x^(2n+1)/(2n+1)!*sum(i=0,2n,(2Pi/x)^i*B(i)*C(2n+1,i)) and if x=Pi/2 sum(k>0,(-1)^(k+1)/k^(2n+1))=(-1)^n*E(2n)*Pi^(2n+1)/2^(2n+2)/(2n)!. - Benoit Cloitre, May 01 2002

Examples

			x/cos(x) = x + 1/2*x^3 + 5/24*x^5 + 61/720*x^7 + 277/8064*x^9 + ...
		

Crossrefs

Programs

  • Maple
    seq((2*i+1)!*coeff(series(x/cos(x),x,32),x,2*i+1),i=0..13);
    A009843 := n -> (-1)^n*(2*n+1)*euler(2*n): # Peter Luschny
  • Mathematica
    c = CoefficientList[Series[1/MittagLefflerE[2,z^2],{z,0,40}],z]; Table[(-1)^n* Factorial[2*n+1]*c[[2*n+1]], {n,0,16}] (* Peter Luschny, Jul 03 2016 *)
  • PARI
    a(n)=(-1)^(n+1)*sum(i=0,2*n+1,binomial(2*n+1,i)*bernfrac(i)*4^i)
    
  • PARI
    a(n)=subst(bernpol(2*n+1),'x,1/4)*4^(2*n+1)*(-1)^(n+1) \\ Charles R Greathouse IV, Dec 10 2014
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [a(0), a(1), ..., a(n)] for n > 0.
    def A009843_list(n):
        S = [0 for i in range(n+1)]
        S[0] = 1
        for k in range(1, n+1):
            S[k] = k*S[k-1]
        for k in range(1, n+1):
            for j in range(k, n+1):
                S[j] = (j-k)*S[j-1]+(j-k+1)*S[j]
            S[k] = (2*k+1)*S[k]
        return S
    print(A009843_list(10)) # Peter Luschny, Aug 09 2011

Formula

a(n) = (2n+1)*A000364(n) = sum(i=0, 2n, B(i)*C(2n+1, i)*4^i)=(2n+1)*E(2n) where B(i) are the Bernoulli numbers, C(2n, i) the binomial numbers and E(2n) the Euler numbers. - Benoit Cloitre, May 01 2002
Recurrence: a(n) = -(-1)^n*Sum[i=0..n-1, (-1)^i*a(i)*C(2n+1, 2i+1) ]. - Ralf Stephan, Feb 24 2005
a(n) = 4^n |E_{2n}(1/2)+E_{2n}(1)| (2n+1) for n > 0; E_{n}(x) Euler polynomial. - Peter Luschny, Nov 25 2010
a(n) = (2*n+1)! * [x^(2*n+1)] x/cos(x).
From Sergei N. Gladkovskii, Nov 15 2011, Oct 19 2012, Nov 10 2012, Jan 14 2013, Apr 10 2013, Oct 13 2013, Dec 01 2013: (Start) Continued fractions:
E.g.f.: x / cos(x) = x+x^3/Q(0); Q(k) = 8k+2-x^2/(1+(2k+1)*(2k+2)/Q(k+1)).
E.g.f.: x + x^3/U(0) where U(k) = (2*k+1)*(2*k+2) - x^2 + x^2*(2*k+1)*(2*k+2)/U(k+1).
G.f.: 1/G(0) where G(k) = 1 - x*(8*k^2+8*k+3)-16*x^2*(k+1)^4/G(k+1).
E.g.f.: 2*x/(Q(0) + 1) where Q(k)= 1 - x/(2*k+1)/(2*k+2)/(1 - 1/(1 + 1/Q(k+1))).
Let A(x) = S_{n>=0}a(n)*x^n/(2*n+1)! then A(x) = 1 + Q(0)*x/(2-x) where Q(k) = 1 - x*(2*k+1)*(2*k+2)/(x*(2*k+1)*(2*k+2) + ((2*k+1)*(2*k+2) - x)*((2*k+3)*(2*k+4) - x)/Q(k+1)).
G.f.: T(0)/(1-3*x) where T(k) = 1 - 16*x^2*(k+1)^4/(16*x^2*(k+1)^4 - (1 - x*(8*k^2 +8*k+3)) *(1 - x*(8*k^2+24*k+19))/T(k+1)).
G.f.: 1/T(0) where T(k) = 1 + x - x*(2*k+2)^2/(1 - x*(2*k+2)^2/T(k+1)). (End)
a(n) = (-1)^n*2^(4*n+1)*(2*n+1)*(zeta(-2*n,1/4)-zeta(-2*n,3/4)). - Peter Luschny, Jul 22 2013
From Peter Bala, Mar 02 2015: (Start)
a(n) = (-1)^(n+1)*4^(2*n + 1)*B(2*n + 1,1/4), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A069852 and A069994.
Conjecturally, a(n) = the unsigned numerator of B(2*n+1,1/4).
G.f. for signed version of sequence: Sum_{n >= 0} { 1/(n + 1) * Sum_{k = 0..n} (-1)^k*binomial(n,k)/( (1 - (4*k + 1)*x)*(1 - (4*k + 3)*x) ) } = 1 - 3*x^2 + 25*x^4 - 427*x^6 + .... (End)
a(n) ~ (2*n+1)! * 2^(2*n+2)/Pi^(2*n+1). - Vaclav Kotesovec, Jul 04 2016
G.f.: 1/(1 + x - 4*x/(1 - 4*x/(1 + x - 16*x/(1 - 16*x/(1 + x - 36*x/(1 - 36*x/(1 + x - ...))))))). Cf. A005439. - Peter Bala, May 07 2017

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997

A009752 Expansion of e.g.f. tan(x)*x (even powers only).

Original entry on oeis.org

0, 2, 8, 96, 2176, 79360, 4245504, 313155584, 30460116992, 3777576173568, 581777702256640, 108932957168730112, 24370173276164456448, 6419958484945407574016, 1967044844910430876860416, 693575525634287935244206080, 278846808228005417477465964544, 126799861926498005417315327279104
Offset: 0

Views

Author

Keywords

Examples

			2*x/(1+e^(2*x)) = 0 + x - 2/2!*x^2 + 8/4!*x^4 - 96/6!*x^6 + 2176/8!*x^8 ...
		

Crossrefs

Programs

  • Maple
    a := n -> 4^n*n*`if`(n=0,0,abs(euler(2*n-1, 0))): # Peter Luschny, Jun 09 2016
  • Mathematica
    nn = 30; t = Range[0, nn]! CoefficientList[Series[x*Tan[x], {x, 0, nn}], x]; Take[t, {1, nn + 1, 2}] (* T. D. Noe, Sep 20 2012 *)
    Table[(-1)^n 4 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *)
  • PARI
    my(x='x+O('x^50)); v=Vec(serlaplace(x*tan(x))); concat([0], vector(#v\2,n,v[2*n-1])) \\ G. C. Greubel, Feb 12 2018

Formula

a(n) = n 4^n |E_{2n-1}(1/2)+E_{2n-1}(1)| for n > 0; E_{n}(x) Euler polynomials. - Peter Luschny, Nov 25 2010
a(n) = (2*n)! * [x^(2*n)] tan(x)*x.
a(n) = 2*(2*n)!*Pi^(-2*n)*(4^n-1)*Li{2*n}(1) for n > 0. - Peter Luschny, Jun 29 2012
E.g.f.: sqrt(x)*tan(sqrt(x))= sum(n>=0, a(n)*x^n/(2*n)! ) = x/T(0) where T(k)= 1 - 4*k^2 + x*(1 - 4*k^2)/T(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 19 2012
E.g.f.: -1 - x^(1/2)- Q(0),where Q(k) = 4*k -1 - x/( 1 - x/ (4*k+1 + x/( 1 + x/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013
From Peter Luschny, Jun 09 2016: (Start)
a(n) = (4^n-16^n)*Sum_{k=0..2*n} (-1)^(n-k)*Stirling2(2*n, k)*k!/(k+1).
2*a(n)/4^n = A110501(n) for n>=1.
a(n) / 2^n = A117513(n) for n>=1. (End)
a(n) ~ (4*(4^(2*n)-2^(2*n)))*Pi*(n/(Pi*e))^(2*n+1/2)*exp(1/2+1/(24*n)-1/(2880*n^3) +1/(40320*n^5)-...). - Peter Luschny, Jan 16 2017
a(n) = (-1)^n*4*n*PolyLog(1 - 2*n, -i). - Peter Luschny, Aug 17 2021
a(n) = 2*A024255(n). - Alois P. Heinz, Aug 17 2021

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997

A249402 The number of 3-alternating permutations of [n].

Original entry on oeis.org

1, 1, 1, 2, 3, 11, 40, 99, 589, 3194, 11259, 92159, 666160, 3052323, 31799041, 287316122, 1620265923, 20497038755, 222237912664, 1488257158851, 22149498351205, 280180369563194, 2172534146099019, 37183508549366519, 537546603651987424, 4736552519729393091
Offset: 0

Views

Author

R. J. Mathar, Oct 27 2014

Keywords

Comments

A sequence a(1),a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k). a(n) gives the number of 3-alternating permutations of [n].

Examples

			The a(4)=3 3-alternating permutations of [4] are: [2 1 3 4 ] [3 1 2 4 ] and [4 1 2 3 ].
The a(5)=11 3-alternating permutations of [5] are: [2 1 3 5 4 ] [2 1 4 5 3 ] [3 1 2 5 4 ] [3 1 4 5 2 ] [3 2 4 5 1 ] [4 1 2 5 3 ] [4 1 3 5 2 ] [4 2 3 5 1 ] [5 1 2 4 3 ] [5 1 3 4 2 ] and [5 2 3 4 1 ].
		

Crossrefs

Cf. A065619 (2-alternating).
Cf. A178963, A249583 (alternative definitions of 3-alternating permutations).
Column k=3 of A250261.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
         `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
                   add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
        end:
    a:= n-> b(0, n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 27 2014
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 3]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 3]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 22 2015, after Alois P. Heinz *)

Extensions

a(16)-a(25) from Alois P. Heinz, Oct 27 2014

A104345 Triangle read by rows: T(n,k) is the number of alternating permutations on [n+1] with 1 in position k+1, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 5, 8, 6, 8, 5, 16, 25, 20, 20, 25, 16, 61, 96, 75, 80, 75, 96, 61, 272, 427, 336, 350, 350, 336, 427, 272, 1385, 2176, 1708, 1792, 1750, 1792, 1708, 2176, 1385, 7936, 12465, 9792, 10248, 10080, 10080, 10248, 9792, 12465, 7936
Offset: 0

Views

Author

David Callan, Mar 02 2005

Keywords

Examples

			Table begins
\ k..0....1....2....3....4....
n
0 |..1
1 |..1....1
2 |..1....2....1
3 |..2....3....3....2
4 |..5....8....6....8....5
5 |.16...25...20...20...25...16
6 |.61...96...75...80...75...96...61
7 |272..427..336..350..350..336..427..272
For example, T(3,1) counts 2143, 3142, 4132 - the alternating permutations on [4] with 1 in position 2.
		

Crossrefs

Cf. A104346. Row sums are A001250; column k=0 and main diagonal are the up-down numbers (A000111); column k=1 is A065619.
T(2n,n) gives A362581.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    T:= (n, k)-> binomial(n, k)*b(k, 0)*b(n-k, 0):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 25 2023
  • Mathematica
    b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
    T[n_, k_] := Binomial[n, k]*b[k, 0]*b[n-k, 0];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz *)

Formula

The mixed o.g.f./e.g.f. is Sum_{k=0..n} T(n, k)*x^n/n!*y^k = (sec(x) + tan(x))*(sec(x*y) + tan(x*y)).
T(n,k) = binomial(n,k)*A000111(k)*A000111(n-k). - Alois P. Heinz, Apr 25 2023

A099028 Euler-Seidel matrix T(k,n) with start sequence e.g.f. 2x/(1+e^(2x)), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 0, -1, -2, -3, -3, -2, 0, 0, 3, 6, 8, 8, 25, 25, 22, 16, 8, 0, 0, -25, -50, -72, -88, -96, -96, -427, -427, -402, -352, -280, -192, -96, 0, 0, 427, 854, 1256, 1608, 1888, 2080, 2176, 2176, 12465, 12465, 12038, 11184, 9928, 8320, 6432, 4352, 2176, 0
Offset: 0

Views

Author

Ralf Stephan, Sep 27 2004

Keywords

Comments

In an Euler-Seidel matrix, the rows are consecutive pairwise sums and the columns consecutive differences.

Examples

			Seidel matrix:
[    0     1    -2     0     8     0   -96     0  2176     0]
[    1    -1    -2     8     8   -96   -96  2176  2176     .]
[    0    -3     6    16   -88  -192  2080  4352     .     .]
[   -3     3    22   -72  -280  1888  6432     .     .     .]
[    0    25   -50  -352  1608  8320     .     .     .     .]
[   25   -25  -402  1256  9928     .     .     .     .     .]
[    0  -427   854 11184     .     .     .     .     .     .]
[ -427   427 12038     .     .     .     .     .     .     .]
[    0 12465     .     .     .     .     .     .     .     .]
[12465     .     .     .     .     .     .     .     .     .]
		

Crossrefs

First column (odd part) is A009843, main diagonal is in A099029. Antidiagonal sums are in A065619. Cf. A009752.

Programs

  • Mathematica
    T[k_, n_] := T[k, n] = If[k == 0, SeriesCoefficient[2x/(1 + E^(2x)), {x, 0, n}] n!, T[k-1, n] + T[k-1, n+1]];
    Table[T[k-n, n], {k, 0, 9}, {n, 0, k}] (* Jean-François Alcover, Jun 11 2019 *)
  • Sage
    def SeidelMatrixA099028(dim):
        E = matrix(ZZ, dim)
        t = taylor(2*x/(1+exp(2*x)), x, 0, dim + 1)
        for k in (0..dim-1):
            E[0, k] = factorial(k) * t.coefficient(x, k)
        R = [0]
        for n in (1..dim-1):
            for k in (0..dim-n-1):
                E[n, k] = E[n-1, k] + E[n-1, k+1]
            R.extend([E[n-k,k] for k in (0..n)])
        return R
    print(SeidelMatrixA099028(10)) # Peter Luschny, Jul 02 2016

Formula

Recurrence: T(k, n) = T(k-1, n) + T(k-1, n+1).

A178616 Triangle by columns, odd columns of Pascal's triangle A007318, otherwise (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 0, 4, 1, 0, 5, 0, 10, 0, 1, 0, 6, 0, 20, 0, 6, 1, 0, 7, 0, 35, 0, 21, 0, 1, 0, 8, 0, 56, 0, 56, 0, 8, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 0, 10, 0, 120, 0, 252, 0, 120, 0, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, May 30 2010

Keywords

Comments

Row sums = a variant of A052950, starting (1, 1, 3, 4, 9, 16, 33, ...); whereas A052950 starts (2, 1, 3, 4, 9, ...).
Column 1 of the inverse of A178616 is a signed variant of A065619 prefaced with a 0; where A065619 = (1, 2, 3, 8, 25, 96, 427, ...).

Examples

			First few rows of the triangle:
  1,
  0,  1;
  0,  2, 1;
  0,  3, 0,   1
  0,  4, 0,   4, 1;
  0,  5, 0,  10, 0,   1;
  0,  6, 0,  20, 0,   6, 1;
  0,  7, 0,  35, 0,  21, 0,   1;
  0,  8, 0,  56, 0,  56, 0,   8, 1;
  0,  9, 0,  84, 0, 126, 0,  36, 0,  1;
  0, 10, 0, 120, 0, 252, 0, 120, 0, 10, 1;
  0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1;
  ...
		

Crossrefs

Formula

Triangle, odd columns of Pascal's triangle; (1, 0, 0, 0, ...) as even columns k.
Alternatively, (since A178616 + A162169 - Identity matrix) = Pascal's triangle,
we can begin with Pascal's triangle, subtract A162169, then add the Identity
matrix to obtain A178616.

A250259 The number of 4-alternating permutations of [n].

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 19, 78, 217, 496, 3961, 25442, 105963, 349504, 3908059, 34227438, 190065457, 819786496, 11785687921, 130746521282, 907546301523, 4835447317504, 84965187064099, 1141012634368398, 9504085749177097, 60283564499562496, 1251854782837499881
Offset: 0

Views

Author

R. J. Mathar, Nov 15 2014

Keywords

Comments

A sequence a(1),a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k).

Crossrefs

Cf. A249402 (3-alternating), A065619 (2-alternating), A250260 (5-alternating).
Column k=4 of A250261.

Programs

  • Maple
    onestep := proc(n::integer,ups::integer,downs::integer,uplen::integer)
        local thisstep,left,doup,tak,ret ;
        option remember;
        left := ups+downs ;
        if left = 0 then
            return 1;
        end if;
        thisstep := n-left+1 ;
        if modp(thisstep-2,uplen+1) = 0 then
            doup := false;
        else
            doup := true;
        end if;
        if doup then
            ret := 0 ;
            for tak from 1 to ups do
                ret := ret+procname(n,ups-tak,downs+tak-1,uplen) ;
            end do:
            return ret ;
        else
            ret := 0 ;
            for tak from 1 to downs do
                ret := ret+procname(n,ups+tak-1,downs-tak,uplen) ;
            end do:
            return ret ;
        end if;
    end proc:
    downupP := proc(n::integer,uplen::integer)
        local ret,tak;
        if n = 0 then
            return 1;
        end if;
        ret := 0 ;
        for tak from 1 to n do
            ret := ret+onestep(n,n-tak,tak-1,uplen) ;
        end do:
        return ret ;
    end proc:
    A250259 :=proc(n)
        downupP(n,3) ;
    end proc:
    seq(A250259(n),n=0..20) ; # R. J. Mathar, Nov 15 2014
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
         `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 4)), j=1..u),
                   add(b(u+j-1, o-j, irem(t+1, 4)), j=1..o)))
        end:
    a:= n-> b(0, n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 15 2014
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

A250260 The number of 5-alternating permutations of [n].

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 29, 133, 412, 1041, 2300, 22991, 170832, 822198, 3114489, 10006375, 141705439, 1457872978, 9522474417, 48094772656, 202808749375, 3716808948931, 48860589990687, 403131250565618, 2545098156762649, 13287626090593750
Offset: 0

Views

Author

R. J. Mathar, Nov 15 2014

Keywords

Comments

A sequence a(1), a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k).

Crossrefs

Cf. A065619 (2-alternating), A249402 (3-alternating), A250259 (4-alternating).
Column k=5 of A250261.

Programs

  • Maple
    # dowupP defined in A250259.
    A250260 :=proc(n)
        downupP(n,4) ;
    end proc:
    seq(A250260(n),n=0..20) ;
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
         `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 5)), j=1..u),
                   add(b(u+j-1, o-j, irem(t+1, 5)), j=1..o)))
        end:
    a:= n-> b(0, n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 15 2014
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 5]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 5]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)

A243963 a(n) = n*4^n*(-Z(1-n, 1/4)/2 + Z(1-n, 3/4)/2 - Z(1-n, 1)*(1 - 2^(-n))) for n > 0 and a(0) = 0, where Z(n, c) is the Hurwitz zeta function.

Original entry on oeis.org

0, 0, 2, 3, -8, -25, 96, 427, -2176, -12465, 79360, 555731, -4245504, -35135945, 313155584, 2990414715, -30460116992, -329655706465, 3777576173568, 45692713833379, -581777702256640, -7777794952988025, 108932957168730112, 1595024111042171723, -24370173276164456448
Offset: 0

Views

Author

Paul Curtz, Jun 16 2014

Keywords

Comments

Previous name was: 0 followed by -(n+1)*A163747(n).
Difference table of a(n):
0, 0, 2, 3, -8, -25,...
0, 2, 1, -11, -17, 121,...
2, -1, -12, -6, 138, 210,...
-3, -11, 6, 144, 72, -3144,...
-8, 17, 138, -72, -3216, -1608,...
25, 121, -210, -3144, 1608,...
a(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence. Its main diagonal is the first upper diagonal multiplied by 2.

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 0, n*4^n*(-Zeta(0, 1-n, 1/4)/2 + Zeta(0, 1-n, 3/4)/2 + Zeta(1-n)*(2^(-n)-1))): seq(a(n), n=0..24); # Peter Luschny, Jul 21 2020
  • Mathematica
    a[0] = 0; a[n_] := -n*SeriesCoefficient[(2*E^x*(1 - E^x))/(1 + E^(2*x)), {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jun 17 2014 *)

Formula

a(n) = 0, 0, followed by (period 4: repeat 1, 1, -1, -1)*A065619(n+2).
a(2n) = (-1)^(n+1)A009752(n). a(2n+1) = (-1)^n*A009843(n+1).

Extensions

New name by Peter Luschny, Jul 21 2020

A294033 Triangle read by rows, expansion of exp(x*z)*z*(tanh(z) + sech(z)), T(n, k) for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 2, 2, -3, 6, 3, -8, -12, 12, 4, 25, -40, -30, 20, 5, 96, 150, -120, -60, 30, 6, -427, 672, 525, -280, -105, 42, 7, -2176, -3416, 2688, 1400, -560, -168, 56, 8, 12465, -19584, -15372, 8064, 3150, -1008, -252, 72, 9, 79360, 124650, -97920, -51240, 20160, 6300, -1680, -360, 90, 10, -555731, 872960, 685575, -359040, -140910, 44352, 11550, -2640, -495, 110, 11
Offset: 1

Views

Author

Peter Luschny, Oct 24 2017

Keywords

Examples

			Triangle starts:
  [1][   1]
  [2][   2,   2]
  [3][  -3,   6,    3]
  [4][  -8, -12,   12,    4]
  [5][  25, -40,  -30,   20,    5]
  [6][  96, 150, -120,  -60,   30,  6]
  [7][-427, 672,  525, -280, -105, 42, 7]
		

Crossrefs

T(n, 0) = signed A065619. Row sums of abs(T(n,k)) = A231179.
A003506 (m=1), this seq. (m=2), A294034 (m=3).

Programs

  • Maple
    gf := exp(x*z)*z*(tanh(z)+sech(z)):
    s := n -> n!*coeff(series(gf,z,n+2),z,n):
    C := n -> PolynomialTools:-CoefficientList(s(n),x):
    ListTools:-FlattenOnce([seq(C(n), n=1..7)]);
    # Alternatively:
    T := (n, k) -> `if`(n = k+1, n,
    (k+1)*binomial(n,k+1)*2^(n-k-1)*(euler(n-k-1, 1/2)+euler(n-k-1, 1))):
    for n from 1 to 7 do seq(T(n,k), k=0..n-1) od;
  • Mathematica
    L[0] := 1; L[n_] := (-1)^Binomial[n, 2] 2 Abs[PolyLog[-n, -I]];
    p[n_] := n Sum[Binomial[n - 1, k - 1] L[k - 1] x^(n - k), {k, 0, n}];
    Table[CoefficientList[p[n], x], {n, 1, 11}] // Flatten

Formula

T(n, k) = (k+1)*binomial(n,k+1)*2^(n-k-1)*(Euler(n-k-1, 1/2) + Euler(n-k-1, 1)) for 0 <= k <= n-2.
T(n, k) is the coefficient of x^k of the polynomial p(n) = n*Sum_{k=1..n} binomial(n-1, k-1)*L(k-1)*x^(n-k) and L(n) = (-1)^binomial(n,2)*A000111(n). In particular n divides T(n, k).
Showing 1-10 of 10 results.