A053737 Sum of digits of (n written in base 4).
0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5
Offset: 0
Examples
a(20) = 1+1+0 = 2 because 20 is written as 110 base 4. From _Omar E. Pol_, Feb 21 2010: (Start) This can be written as a triangle (cf. A000120): 0, 1,2,3, 1,2,3,4,2,3,4,5,3,4,5,6, 1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,5,6,7,5,6,7,8,6,7,8,9, 1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,... where the rows converge to A173524. (End)
Links
- Donovan Johnson, Table of n, a(n) for n = 0..10000
- F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS Vol. 12 (2009), Article 09.5.6.
- Steve Butler and Ron L. Graham, Shuffling with ordered cards, arXiv 1003:4422 [math.CO], 2010.
- Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
- Robert Walker, Self Similar Sloth Canon Number Sequences.
- Eric Weisstein's World of Mathematics, Digit Sum.
Crossrefs
Cf. A173524. - Omar E. Pol, Feb 21 2010
Sum of digits of n written in bases 2-16: A000120, A053735, this sequence, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Programs
-
Haskell
a053737 n = if n == 0 then 0 else a053737 m + r where (m, r) = divMod n 4 -- Reinhard Zumkeller, Mar 19 2015
-
MATLAB
for u=0:104; sol(u+1)=sum(dec2base(u,4)-'0');end sol % Marius A. Burtea, Jan 17 2019
-
Magma
[&+Intseq(n,4):n in [0..104]]; // Marius A. Burtea, Jan 17 2019
-
Maple
A053737 := proc(n) add(d,d=convert(n,base,4)) ; end proc: # R. J. Mathar, Oct 31 2012
-
Mathematica
Table[Plus @@ IntegerDigits[n, 4], {n, 0, 100}] (* or *) Nest[ Flatten[ #1 /. a_Integer -> {a, a+1, a+2, a+3}] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *) DigitSum[Range[0, 100], 4] (* Paolo Xausa, Aug 01 2024 *)
-
PARI
a(n)=if(n<1,0,if(n%4,a(n-1)+1,a(n/4)))
-
PARI
a(n) = sumdigits(n, 4); \\ Michel Marcus, Aug 24 2019
Formula
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(4n+i) = a(n)+i for 0 <= i <= 3.
a(n) = n - 3*Sum_{k>0} floor(n/4^k) = n - 3*A054893(n). (End)
G.f.: (Sum_{k>=0} (x^(4^k) + 2*x^(2*4^k) + 3*x^(3*4^k))/(1 + x^(4^k) + x^(2*4^k) + x^(3*4^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005
a(n) = A138530(n,4) for n > 3. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A030386(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 4^floor(log_4(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 4*log(4)/3 (Shallit, 1984). - Amiram Eldar, Jun 03 2021
Comments