cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010123 Continued fraction for sqrt(14).

Original entry on oeis.org

3, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6
Offset: 0

Views

Author

Keywords

Examples

			3.741657386773941385583748732... = 3 + 1/(1 + 1/(2 + 1/(1 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 02 2009
		

References

  • Roger Penrose, "The Road to Reality, A complete guide to the Laws of the Universe", Jonathan Cape, London, 2004, page 56. [From Olivier GĂ©rard, May 22 2009]
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010471 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[14],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{3},120,{6,1,2,1}] (* Harvey P. Dale, Jan 16 2017 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 15000); x=contfrac(sqrt(14)); for (n=0, 20000, write("b010123.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009

Formula

a(n) = 1 + floor((n+2)/4) - floor((n+1)/4) + 5*(floor((n+4)/4) - floor((n+3)/4)) for n > 0. - Wesley Ivan Hurt, Apr 10 2017
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 2, a(2^e) = 6 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s + 1/2^(2*s-2)). (End)
G.f.: (3 + x + 2*x^2 + x^3 + 3*x^4)/(1 - x^4). - Stefano Spezia, Jul 26 2025