cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A010471 Decimal expansion of square root of 14.

Original entry on oeis.org

3, 7, 4, 1, 6, 5, 7, 3, 8, 6, 7, 7, 3, 9, 4, 1, 3, 8, 5, 5, 8, 3, 7, 4, 8, 7, 3, 2, 3, 1, 6, 5, 4, 9, 3, 0, 1, 7, 5, 6, 0, 1, 9, 8, 0, 7, 7, 7, 8, 7, 2, 6, 9, 4, 6, 3, 0, 3, 7, 4, 5, 4, 6, 7, 3, 2, 0, 0, 3, 5, 1, 5, 6, 3, 0, 6, 9, 3, 9, 0, 2, 7, 9, 7, 6, 8, 0, 9, 8, 9, 5, 1, 9, 4, 3, 7, 9, 5, 7
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 3 followed by {1, 2, 1, 6} repeated. - Harry J. Smith, Jun 02 2009
The convergents are given in A041020/A041021. - Wolfdieter Lang, Nov 27 2017

Examples

			3.741657386773941385583748732316549301756019807778726946303745467320035...
		

Crossrefs

Cf. A010123 (continued fraction), A041020/A041021.

Programs

  • Maple
    evalf[100](sqrt(14)); # Muniru A Asiru, Feb 12 2019
  • Mathematica
    RealDigits[N[Sqrt[14], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
    RealDigits[Sqrt[14],10,120][[1]] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    default(realprecision, 20080); x=sqrt(14); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010471.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009

A010121 Continued fraction for sqrt(7).

Original entry on oeis.org

2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4
Offset: 0

Views

Author

Keywords

Comments

This is a basic member of a family of 4-periodic multiplicative sequences with two parameters (c1,c2), defined for n >= 1 by a(n)=1 if n is odd, a(n)=c1 if n == 0 (mod 4) and a(n)=c2 if n == 2 (mod 4). Here, (c1,c2)=(4,1).
The Dirichlet generating function is (1+(c2-1)/2^s+(c1-c2)/4^s)*zeta(s).
Other members are A010123 with parameters (6,2), A010127 (8,3), A010130 (10,1), A010131 (10,2), A010132 (10,4), A010137 (12,5), A010146 (14,6), A089146 (4,8), A109008 (4,2), A112132 (7,3). If c1=c2, this reduces to the cases discussed in A040001. - R. J. Mathar, Feb 18 2011

Examples

			2.645751311064590590501615753...  = A010465 = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...)))).
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010465 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[7],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    CoefficientList[Series[(2 x^2 + 3 x + 2) (x^2 - x + 1) / ((1 - x) (1 + x) (x^2 + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 26 2016 *)
    PadRight[{2},120,{4,1,1,1}] (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(7)); for (n=0, 20000, write("b010121.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

From R. J. Mathar, Jun 17 2009: (Start)
G.f.: -(2*x^2+3*x+2)*(x^2-x+1)/((x-1)*(1+x)*(x^2+1)).
a(n) = a(n-4), n > 4. (End)
a(n) = (7 + 3*(-1)^n + 3*(-i)^n + 3*i^n)/4, n > 0, where i is the imaginary unit. - Bruno Berselli, Feb 18 2011

A010696 Periodic sequence: Repeat 2,6.

Original entry on oeis.org

2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2
Offset: 0

Views

Author

Keywords

Comments

Original name: Period 2.
Also continued fraction expansion of 1+(2/3)*sqrt(3). - Bruno Berselli, Sep 22 2011

Crossrefs

Cf. A174114. [From Reinhard Zumkeller, Mar 08 2010]

Programs

  • Mathematica
    PadRight[{}, 100, {2, 6}] (* Paolo Xausa, Feb 22 2024 *)

Formula

G.f.: ( -2-6*x ) / ( (x-1)*(1+x) ). - R. J. Mathar, Jul 07 2011
a(n) = a(-n) = 2*A010684(n) = A131800(2n+1) = A010123(2n+2). - Bruno Berselli, Sep 22 2011

Extensions

Definition rewritten by Bruno Berselli, Sep 22 2011

A326422 Numbers k such that A000045(k) mod 5 is prime.

Original entry on oeis.org

3, 4, 6, 7, 13, 14, 16, 17, 23, 24, 26, 27, 33, 34, 36, 37, 43, 44, 46, 47, 53, 54, 56, 57, 63, 64, 66, 67, 73, 74, 76, 77, 83, 84, 86, 87, 93, 94, 96, 97, 103, 104, 106, 107, 113, 114, 116, 117, 123, 124, 126, 127, 133, 134, 136, 137, 143, 144, 146, 147, 153, 154, 156, 157
Offset: 1

Views

Author

Vincenzo Librandi, Jul 06 2019

Keywords

Comments

Position of prime numbers in A082116.

Crossrefs

Partial sums of A010123.

Programs

  • Magma
    [n: n in [0..200] | IsPrime(Fibonacci(n) mod 5)];
  • Mathematica
    Select[Range[160], MemberQ[{2, 3}, Mod[Fibonacci[#], 5]] &]

Formula

G.f.: x*(3*x^2+4*x+3)*(x^2-x+1)/((x+1)*(x^2+1)*(x-1)^2). - Alois P. Heinz, Jul 08 2019
E.g.f.: (6 - 2*cos(x) + (5*x - 4)*cosh(x) + 2*sin(x) + (5*x - 1)*sinh(x))/2. - Stefano Spezia, Jul 15 2025
Showing 1-4 of 4 results.